finished datacollection

This commit is contained in:
unknown 2022-04-19 22:59:14 -07:00
parent f2cdf66de1
commit 44c86eb51a
2 changed files with 205 additions and 10 deletions

View File

@ -0,0 +1,114 @@
import re
import urllib.request
from urllib.parse import urlparse
from urllib.parse import urljoin
from bs4 import BeautifulSoup
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.corpus import words
import html2text
import nltk
# nltk.download('stopwords')
# nltk.download('words')
# there is another nltk.download() requirement but I removed it so i forgot what it was
# it'll show in the console/terminal if you run the code i believe
# it showed in mine
# To explain this class I have to start by explaining the container I decided on using to keep track of subdomains of ics.uci.edu
# I decided to use a dict. Long story short, I was trying to figure out what to make my key so it would uniquely identify what I needed it to do.
# I was going to use the parsed.netloc; however, we're taking into account that a link that looks like https://somename.vision.ics.uci.edu
# is a unique link of the subdomain vision.
# And so I made the key the subdomain that is before ics.uci.edu in the link, and the value of the dict is this class
# It's a very simple class, so I'm not going to commenting what it does
class urlData:
def __init__(self, url, subdomain, domain):
self.url = url
self.nicelink = "http://" + removeFragment(url).netloc
self.domain = domain
self.subdomain = subdomain
self.uniques = set()
self.uniques.add(removeFragment(url))
def getDomain(self):
return self.domain
def getURL(self):
return self.url
def getNiceLink(self):
return self.nicelink
def getSub(self):
return self.subdomain
def getUniques(self):
return self.uniques
def appendUnique(self, parse):
self.uniques.add(parse)
# Tried to find a libary that would do this for me, but couldn't
# It parses the url and uses the netloc to separat for domain and subdomain
def findDomains(url):
urlsplit = url.split('.')
if urlsplit[0].lower() == 'www':
urlsplit.remove('www')
for i in range(len(urlsplit)):
if urlsplit[i] == 'ics':
if i == 0:
return 0, 0
elif i == 1:
return urlsplit[0], urlsplit[1]
else:
return urlsplit[i-1], urlsplit[i] #something like random.vision.ics.uci.edu will be consider a unique page of vision
return None, None
else:
for i in range(len(urlsplit)):
if urlsplit[i] == 'ics':
if i == 0:
return 0, 0
elif i == 1:
return urlsplit[0], urlsplit[1]
else:
return urlsplit[i-1], urlsplit[i] #something like random.vision.ics.uci.edu will be consider a unique page of vision
return None, None
def tokenize(url):
# getting connection from url
page = urllib.request.urlopen(url)
data = page.read()
# named it tSoup for merge convience
# need the 'lxml' parser for this.
# When extract_next_links is called it returns a list full of links with no resp, and I had to find a way to get text from just link.
# Therefore, I decided to get the plain text this way.
tSoup = BeautifulSoup(data, 'lxml')
# Floyd (1 March 2021) Stackoverflow. https://stackoverflow.com/questions/328356/extracting-text-from-html-file-using-python
# compared this with tSoup.get_text() and clean_text just provided content easier to tokenize and more inline with my intentions
clean_text = ' '.join(tSoup.stripped_strings)
token = word_tokenize(clean_text)
# This used the nltk.corpus and just removes the tokens that aren't words
token = [i for i in token if i.lower() in words.words()]
return token
#added this so the scraper code is not too redundant
def computeFrequencies(tokens, d):
for t in tokens:
if t not in d:
d[t] = 1
else:
d[t] += 1
def removeStopWords(toks):
stopWords = set(stopwords.words('english'))
return [t for t in toks if t.lower() if not t.lower() in stopWords]
def removeFragment(u):
# turn into a urlparse object
# removed fragment in order to have "unique" links
removefrag = urlparse(u)
removefrag = removefrag._replace(fragment = '')
return removefrag

View File

@ -1,34 +1,115 @@
import re
import urllib.request
from urllib.parse import urlparse
from urllib.parse import urljoin
from bs4 import BeautifulSoup
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.corpus import words
import html2text
import nltk
#moved all my code to a separted py file and imported it here
from datacollection import *
# nltk.download('stopwords')
# nltk.download('words')
# there is another nltk.download() requirement but I removed it so i forgot what it was
# it'll show in the console/terminal if you run the code i believe. it appeared in mine
def scraper(url, resp):
# initialize set for unique links
# used a set for elimatining duplicates
uniques = set()
# have to add the original url to the unique set
copyoriginal = url
uniques.add(removeFragment(copyoriginal))
# initializing longest for finding the longest page
max = -9999
longest = None
# have to do this for the original url
tok = tokenize(url)
if len(tok) > max:
max = len(tok)
longest = url
# grand_dict is a dictionary that contains every word over the entire set of pages (excluding stop words)
# key: word , value: frequencies
grand_dict = dict()
tok = removeStopWords(tok)
computeFrequencies(tok, grand_dict)
# ics is a dict with subdomains
ics = dict()
links = extract_next_links(url, resp)
links_valid = list()
valid_links = open("valid_links.txt",'a')
invalid_links = open("invalid_links.txt",'a')
for link in links:
if is_valid(link):
links_valid.append(link)
valid_links.write(link + "\n")
#turn into a urlparse object
#removed fragment in order to have "unique" links
remove_frag = urlparse(url)
remove_frag = remove_frag._replace(fragment = '')
uniques.add(remove_frag)
# Answering q1 for report
uniques.add(removeFragment(link))
# Answering q2
tempTok = tokenize(link)
if len(tempTok) > max:
max = len(tempTok)
longest = link
# Answering q3
tempTok = removeStopWords(tempTok)
computeFrequencies(tempTok, grand_dict)
# Answering q4
fragless = removeFragment(link)
domain = findDomains(fragless.netloc)
if domain[1] == 'ics':
if domain[0] not in ics:
ics[domain[0]] = urlData(link, domain[0], domain[1])
else:
if fragless not in ics[domain[0]].getUniques():
ics[domain[0]].appendUnique(fragless)
else:
invalid_links.write("From: " + url + "\n")
invalid_links.write(link + "\n")
# creating text file that includes the number of unique links
f = open("numUniqueLinks.txt", "w")
f.write("{length}".format(length = len(uniques)))
f = open("q1.txt", "w")
f.write("Number of unique pages: {length}".format(length = len(uniques)))
f.close()
# creating text file for question 2
f = open("q2.txt", "w")
f.write("Largest page url: {url} \nLength of page: {length}".format(url = longest, length = max))
f.close()
# creating text file for question 3
f = open("q3.txt", "w")
sortedGrandDict = {k: v for k, v in sorted(grand_dict.items(), key=lambda item: item[1], reverse = True)}
i = 0
for k, v in sortedGrandDict.items():
if i == 50:
break
else:
f.write(k, ':', v)
f.close()
# creating text file for question 4
sortedDictKeys = sorted(ics.keys())
f = open("q4.txt", "w")
for i in sortedDictKeys:
f.write("{url}, {num}".format(url = ics[i].getNiceLink(), num = len(ics[i].getUniques())))
f.close()
return links_valid