finished datacollection
This commit is contained in:
parent
f2cdf66de1
commit
44c86eb51a
114
spacetime-crawler4py-master/datacollection.py
Normal file
114
spacetime-crawler4py-master/datacollection.py
Normal file
@ -0,0 +1,114 @@
|
||||
import re
|
||||
import urllib.request
|
||||
from urllib.parse import urlparse
|
||||
from urllib.parse import urljoin
|
||||
from bs4 import BeautifulSoup
|
||||
from nltk.tokenize import word_tokenize
|
||||
from nltk.corpus import stopwords
|
||||
from nltk.corpus import words
|
||||
import html2text
|
||||
import nltk
|
||||
# nltk.download('stopwords')
|
||||
# nltk.download('words')
|
||||
# there is another nltk.download() requirement but I removed it so i forgot what it was
|
||||
# it'll show in the console/terminal if you run the code i believe
|
||||
# it showed in mine
|
||||
|
||||
# To explain this class I have to start by explaining the container I decided on using to keep track of subdomains of ics.uci.edu
|
||||
# I decided to use a dict. Long story short, I was trying to figure out what to make my key so it would uniquely identify what I needed it to do.
|
||||
# I was going to use the parsed.netloc; however, we're taking into account that a link that looks like https://somename.vision.ics.uci.edu
|
||||
# is a unique link of the subdomain vision.
|
||||
# And so I made the key the subdomain that is before ics.uci.edu in the link, and the value of the dict is this class
|
||||
# It's a very simple class, so I'm not going to commenting what it does
|
||||
class urlData:
|
||||
def __init__(self, url, subdomain, domain):
|
||||
self.url = url
|
||||
self.nicelink = "http://" + removeFragment(url).netloc
|
||||
self.domain = domain
|
||||
self.subdomain = subdomain
|
||||
self.uniques = set()
|
||||
self.uniques.add(removeFragment(url))
|
||||
|
||||
def getDomain(self):
|
||||
return self.domain
|
||||
|
||||
def getURL(self):
|
||||
return self.url
|
||||
|
||||
def getNiceLink(self):
|
||||
return self.nicelink
|
||||
|
||||
def getSub(self):
|
||||
return self.subdomain
|
||||
|
||||
def getUniques(self):
|
||||
return self.uniques
|
||||
|
||||
def appendUnique(self, parse):
|
||||
self.uniques.add(parse)
|
||||
|
||||
# Tried to find a libary that would do this for me, but couldn't
|
||||
# It parses the url and uses the netloc to separat for domain and subdomain
|
||||
def findDomains(url):
|
||||
urlsplit = url.split('.')
|
||||
if urlsplit[0].lower() == 'www':
|
||||
urlsplit.remove('www')
|
||||
for i in range(len(urlsplit)):
|
||||
if urlsplit[i] == 'ics':
|
||||
if i == 0:
|
||||
return 0, 0
|
||||
elif i == 1:
|
||||
return urlsplit[0], urlsplit[1]
|
||||
else:
|
||||
return urlsplit[i-1], urlsplit[i] #something like random.vision.ics.uci.edu will be consider a unique page of vision
|
||||
return None, None
|
||||
else:
|
||||
for i in range(len(urlsplit)):
|
||||
if urlsplit[i] == 'ics':
|
||||
if i == 0:
|
||||
return 0, 0
|
||||
elif i == 1:
|
||||
return urlsplit[0], urlsplit[1]
|
||||
else:
|
||||
return urlsplit[i-1], urlsplit[i] #something like random.vision.ics.uci.edu will be consider a unique page of vision
|
||||
return None, None
|
||||
|
||||
def tokenize(url):
|
||||
# getting connection from url
|
||||
page = urllib.request.urlopen(url)
|
||||
data = page.read()
|
||||
|
||||
# named it tSoup for merge convience
|
||||
# need the 'lxml' parser for this.
|
||||
# When extract_next_links is called it returns a list full of links with no resp, and I had to find a way to get text from just link.
|
||||
# Therefore, I decided to get the plain text this way.
|
||||
tSoup = BeautifulSoup(data, 'lxml')
|
||||
|
||||
# Floyd (1 March 2021) Stackoverflow. https://stackoverflow.com/questions/328356/extracting-text-from-html-file-using-python
|
||||
# compared this with tSoup.get_text() and clean_text just provided content easier to tokenize and more inline with my intentions
|
||||
clean_text = ' '.join(tSoup.stripped_strings)
|
||||
token = word_tokenize(clean_text)
|
||||
|
||||
# This used the nltk.corpus and just removes the tokens that aren't words
|
||||
token = [i for i in token if i.lower() in words.words()]
|
||||
|
||||
return token
|
||||
|
||||
#added this so the scraper code is not too redundant
|
||||
def computeFrequencies(tokens, d):
|
||||
for t in tokens:
|
||||
if t not in d:
|
||||
d[t] = 1
|
||||
else:
|
||||
d[t] += 1
|
||||
|
||||
def removeStopWords(toks):
|
||||
stopWords = set(stopwords.words('english'))
|
||||
return [t for t in toks if t.lower() if not t.lower() in stopWords]
|
||||
|
||||
def removeFragment(u):
|
||||
# turn into a urlparse object
|
||||
# removed fragment in order to have "unique" links
|
||||
removefrag = urlparse(u)
|
||||
removefrag = removefrag._replace(fragment = '')
|
||||
return removefrag
|
@ -1,34 +1,115 @@
|
||||
import re
|
||||
import urllib.request
|
||||
from urllib.parse import urlparse
|
||||
from urllib.parse import urljoin
|
||||
from bs4 import BeautifulSoup
|
||||
from nltk.tokenize import word_tokenize
|
||||
from nltk.corpus import stopwords
|
||||
from nltk.corpus import words
|
||||
import html2text
|
||||
import nltk
|
||||
#moved all my code to a separted py file and imported it here
|
||||
from datacollection import *
|
||||
|
||||
# nltk.download('stopwords')
|
||||
# nltk.download('words')
|
||||
# there is another nltk.download() requirement but I removed it so i forgot what it was
|
||||
# it'll show in the console/terminal if you run the code i believe. it appeared in mine
|
||||
|
||||
def scraper(url, resp):
|
||||
#initialize set for unique links
|
||||
#used a set for elimatining duplicates
|
||||
# initialize set for unique links
|
||||
# used a set for elimatining duplicates
|
||||
uniques = set()
|
||||
# have to add the original url to the unique set
|
||||
copyoriginal = url
|
||||
uniques.add(removeFragment(copyoriginal))
|
||||
|
||||
# initializing longest for finding the longest page
|
||||
max = -9999
|
||||
longest = None
|
||||
|
||||
# have to do this for the original url
|
||||
tok = tokenize(url)
|
||||
if len(tok) > max:
|
||||
max = len(tok)
|
||||
longest = url
|
||||
|
||||
# grand_dict is a dictionary that contains every word over the entire set of pages (excluding stop words)
|
||||
# key: word , value: frequencies
|
||||
grand_dict = dict()
|
||||
tok = removeStopWords(tok)
|
||||
computeFrequencies(tok, grand_dict)
|
||||
|
||||
# ics is a dict with subdomains
|
||||
ics = dict()
|
||||
|
||||
|
||||
links = extract_next_links(url, resp)
|
||||
links_valid = list()
|
||||
valid_links = open("valid_links.txt",'a')
|
||||
invalid_links = open("invalid_links.txt",'a')
|
||||
|
||||
|
||||
for link in links:
|
||||
if is_valid(link):
|
||||
links_valid.append(link)
|
||||
valid_links.write(link + "\n")
|
||||
|
||||
#turn into a urlparse object
|
||||
#removed fragment in order to have "unique" links
|
||||
remove_frag = urlparse(url)
|
||||
remove_frag = remove_frag._replace(fragment = '')
|
||||
uniques.add(remove_frag)
|
||||
# Answering q1 for report
|
||||
uniques.add(removeFragment(link))
|
||||
|
||||
# Answering q2
|
||||
tempTok = tokenize(link)
|
||||
if len(tempTok) > max:
|
||||
max = len(tempTok)
|
||||
longest = link
|
||||
|
||||
|
||||
# Answering q3
|
||||
tempTok = removeStopWords(tempTok)
|
||||
computeFrequencies(tempTok, grand_dict)
|
||||
|
||||
# Answering q4
|
||||
fragless = removeFragment(link)
|
||||
domain = findDomains(fragless.netloc)
|
||||
if domain[1] == 'ics':
|
||||
if domain[0] not in ics:
|
||||
ics[domain[0]] = urlData(link, domain[0], domain[1])
|
||||
else:
|
||||
if fragless not in ics[domain[0]].getUniques():
|
||||
ics[domain[0]].appendUnique(fragless)
|
||||
|
||||
|
||||
else:
|
||||
invalid_links.write("From: " + url + "\n")
|
||||
invalid_links.write(link + "\n")
|
||||
|
||||
#creating text file that includes the number of unique links
|
||||
f = open("numUniqueLinks.txt", "w")
|
||||
f.write("{length}".format(length = len(uniques)))
|
||||
# creating text file that includes the number of unique links
|
||||
f = open("q1.txt", "w")
|
||||
f.write("Number of unique pages: {length}".format(length = len(uniques)))
|
||||
f.close()
|
||||
|
||||
# creating text file for question 2
|
||||
f = open("q2.txt", "w")
|
||||
f.write("Largest page url: {url} \nLength of page: {length}".format(url = longest, length = max))
|
||||
f.close()
|
||||
|
||||
# creating text file for question 3
|
||||
f = open("q3.txt", "w")
|
||||
sortedGrandDict = {k: v for k, v in sorted(grand_dict.items(), key=lambda item: item[1], reverse = True)}
|
||||
i = 0
|
||||
for k, v in sortedGrandDict.items():
|
||||
if i == 50:
|
||||
break
|
||||
else:
|
||||
f.write(k, ':', v)
|
||||
f.close()
|
||||
|
||||
# creating text file for question 4
|
||||
sortedDictKeys = sorted(ics.keys())
|
||||
f = open("q4.txt", "w")
|
||||
for i in sortedDictKeys:
|
||||
f.write("{url}, {num}".format(url = ics[i].getNiceLink(), num = len(ics[i].getUniques())))
|
||||
f.close()
|
||||
|
||||
return links_valid
|
||||
|
Loading…
Reference in New Issue
Block a user