131 lines
4.0 KiB
Python
131 lines
4.0 KiB
Python
from threading import Thread
|
|
import json
|
|
import os
|
|
|
|
from bs4 import BeautifulSoup
|
|
import re
|
|
|
|
|
|
#Data process
|
|
from nltk.tokenize import word_tokenize
|
|
from nltk.stem import PorterStemmer
|
|
|
|
from posting import Posting
|
|
|
|
|
|
import sys
|
|
|
|
class Node():
|
|
index_value = ''
|
|
postings = list()
|
|
|
|
class Index():
|
|
length = 0
|
|
index = list()
|
|
|
|
class Worker(Thread):
|
|
def __init__(self,worker_id,indexer):
|
|
self.indexer = indexer
|
|
self.stemmer = PorterStemmer()
|
|
self.worker_id = worker_id
|
|
self.num_partial = 0
|
|
self.index = dict()
|
|
super().__init__(daemon=True)
|
|
|
|
def dump(self):
|
|
part_index = Index()
|
|
part_index.length = 0
|
|
part_index.index = list()
|
|
|
|
cur_partial_index_str = "temp/" + str(self.worker_id) + "_" + str(self.num_partial) + '.partial'
|
|
cur_partial_index_index_str = "temp/" + str(self.worker_id) + "_" + str(self.num_partial) + '.index'
|
|
|
|
|
|
cur_partial_index = open(cur_partial_index_str,'w')
|
|
cur_partial_index_index = open(cur_partial_index_index_str,'w')
|
|
|
|
for key in self.index:
|
|
node = Node()
|
|
node.index_value = key
|
|
node.postings = self.index[key]
|
|
|
|
jsonStr = json.dumps(node, default=lambda o: o.__dict__,sort_keys=False)
|
|
|
|
part_index.index.append((node.index_value,cur_partial_index.tell()))
|
|
cur_partial_index.write(jsonStr + '\n')
|
|
part_index.length = part_index.length + 1
|
|
|
|
part_index.index.sort(key=lambda y:y[0])
|
|
jsonStr =json.dumps(part_index, default=lambda o: o.__dict__,sort_keys=False)
|
|
cur_partial_index_index.write(jsonStr)
|
|
|
|
self.indexer.add_partial_index(str(self.worker_id) + "_" + str(self.num_partial))
|
|
self.num_partial = self.num_partial + 1
|
|
self.index.clear()
|
|
|
|
|
|
def run(self):
|
|
while True:
|
|
target = self.indexer.get_next_file()
|
|
if not target:
|
|
self.dump()
|
|
print("Worker " + str(self.worker_id) + " died")
|
|
break
|
|
file_load = open(target)
|
|
data = json.load(file_load)
|
|
soup = BeautifulSoup(data["content"],features="lxml")
|
|
doc_id = target[target.rfind('/')+1:-5]
|
|
url = data['url']
|
|
print("Worker " + str(self.worker_id) + " working on " + url)
|
|
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
|
|
for key_words in important.keys():
|
|
for i in soup.findAll(key_words):
|
|
for word in word_tokenize(i.text):
|
|
important[key_words].append(self.stemmer.stem(word))
|
|
|
|
# Gets a cleaner version text comparative to soup.get_text()
|
|
clean_text = ' '.join(soup.stripped_strings)
|
|
# Looks for large white space, tabbed space, and other forms of spacing and removes it
|
|
# Regex expression matches for space characters excluding a single space or words
|
|
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
|
|
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
|
|
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
|
|
# Stems tokenized text
|
|
clean_text = " ".join([self.stemmer.stem(i) for i in clean_text.split()])
|
|
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
|
|
|
|
tokens = word_tokenize(clean_text)
|
|
|
|
#counter(count,positionals)
|
|
|
|
counter = dict()
|
|
#We calculating tf_raw, and positionals here
|
|
for i in range(len(tokens)):
|
|
word = tokens[i]
|
|
if word in counter:
|
|
counter[word][0] = counter[word][0] + 1
|
|
counter[word][1].append(i)
|
|
else:
|
|
counter[word] = [1,list()]
|
|
counter[word][1].append(i)
|
|
|
|
doc_length = len(tokens)
|
|
for index in counter:
|
|
if index in self.index:
|
|
postings = self.index[index]
|
|
postings.append(Posting(doc_id,url,counter[index][0]/doc_length,0,counter[index][1]))
|
|
else:
|
|
self.index[index] = list()
|
|
self.index[index].append(Posting(doc_id,url,counter[index][0]/doc_length,0,counter[index][1]))
|
|
self.index[index].sort(key=lambda y:y.doc_id)
|
|
|
|
#10 Megabytes index (in Ram approx)
|
|
if sys.getsizeof(self.index) > 10000000:
|
|
self.dump()
|
|
|
|
|
|
|
|
|
|
|
|
|