236 lines
7.2 KiB
Python
236 lines
7.2 KiB
Python
#We have to import the files
|
|
#Split the indexer into 4 parts
|
|
#Alphanumeric sequences into the dataset
|
|
#Stemming
|
|
#Text in bold, headings and other titles should be treated as more important
|
|
|
|
#Posting structure > tf-idf score. Name/id the token was found in . So hashmap.
|
|
#We need shelves to hold the data.
|
|
|
|
#Posting ---> Source of file, tf-idf score. #for now we will only use these two, as we get more complex posting will be change accordingly
|
|
|
|
#Data input
|
|
import json
|
|
import os
|
|
import shelve
|
|
from bs4 import BeautifulSoup
|
|
from time import perf_counter
|
|
import time
|
|
import threading
|
|
|
|
|
|
#Data process
|
|
from nltk.tokenize import word_tokenize
|
|
from nltk.stem import PorterStemmer
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
import re
|
|
|
|
#Logging postings
|
|
from posting import Posting
|
|
from worker import Worker
|
|
|
|
|
|
class Indexer():
|
|
def __init__(self,restart,trimming):
|
|
#Config stuffs
|
|
self.path = "data/DEV/"
|
|
self.restart = restart
|
|
self.trimming = trimming
|
|
self.stemmer = PorterStemmer()
|
|
|
|
#Shelves for index
|
|
#https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html
|
|
#https://www.irishtimes.com/news/science/how-many-numbers-begin-with-a-1-more-than-30-per-cent-1.4162466
|
|
#According to this will be how we split things
|
|
#Save #1 = ABCD + (1) ~ 18.3% of words
|
|
#Save #2 = EFGHIJK + (2-3)~ 27.1% of words
|
|
#Save #3 = LMNOPQ + (4-7) ~ 25.4% of words
|
|
#Save #4 = RSTUVWXYZ + (8-9)~ 29.2% of words
|
|
#Save #5 = Special characters
|
|
if os.path.exists("save_1.shelve") and restart:
|
|
os.remove("save_1.shelve")
|
|
if os.path.exists("save_2.shelve") and restart:
|
|
os.remove("save_2.shelve")
|
|
if os.path.exists("save_3.shelve") and restart:
|
|
os.remove("save_3.shelve")
|
|
if os.path.exists("save_4.shelve") and restart:
|
|
os.remove("save_4.shelve")
|
|
if os.path.exists("save_5.shelve") and restart:
|
|
os.remove("save_5.shelve")
|
|
|
|
|
|
self.save_1 = shelve.open("save_1.shelve")
|
|
self.save_1_lock = threading.Lock()
|
|
self.save_2 = shelve.open("save_2.shelve")
|
|
self.save_2_lock = threading.Lock()
|
|
self.save_3 = shelve.open("save_3.shelve")
|
|
self.save_3_lock = threading.Lock()
|
|
self.save_4 = shelve.open("save_4.shelve")
|
|
self.save_4_lock = threading.Lock()
|
|
self.save_5 = shelve.open("save_5.shelve")
|
|
self.save_5_lock = threading.Lock()
|
|
|
|
print(len(list(self.save_1.keys())))
|
|
print(len(list(self.save_2.keys())))
|
|
print(len(list(self.save_3.keys())))
|
|
print(len(list(self.save_4.keys())))
|
|
print(len(list(self.save_5.keys())))
|
|
|
|
def save_index(self,word,posting):
|
|
cur_save = self.get_save_file(word)
|
|
lock = self.get_save_lock(word)
|
|
lock.acquire()
|
|
shelve_list = list()
|
|
try:
|
|
shelve_list = cur_save[word]
|
|
shelve_list.append(posting)
|
|
tic = perf_counter()
|
|
shelve_list.sort(key=lambda x: x.tf_idf, reverse = True)
|
|
toc = perf_counter()
|
|
if toc - tic > 1 :
|
|
print("Took " + str(toc - tic) + "seconds to sort shelve list !")
|
|
cur_save.sync()
|
|
lock.release()
|
|
except:
|
|
shelve_list.append(posting)
|
|
cur_save[word] = shelve_list
|
|
cur_save.sync()
|
|
lock.release()
|
|
|
|
def get_save_file(self,word):
|
|
#return the correct save depending on the starting letter of word
|
|
word_lower = word.lower()
|
|
|
|
if re.match(r"^[a-d0-1].*",word_lower):
|
|
return self.save_1
|
|
elif re.match(r"^[e-k2-3].*",word_lower):
|
|
return self.save_2
|
|
elif re.match(r"^[l-q4-7].*",word_lower):
|
|
return self.save_3
|
|
elif re.match(r"^[r-z8-9].*",word_lower):
|
|
return self.save_4
|
|
else:
|
|
print(word)
|
|
print("You have somehow went beyond the magic")
|
|
return self.save_5
|
|
|
|
def get_save_lock(self,word):
|
|
word_lower = word.lower()
|
|
if re.match(r"^[a-d0-1].*",word_lower):
|
|
return self.save_1_lock
|
|
elif re.match(r"^[e-k2-3].*",word_lower):
|
|
return self.save_2_lock
|
|
elif re.match(r"^[l-q4-7].*",word_lower):
|
|
return self.save_3_lock
|
|
elif re.match(r"^[r-z8-9].*",word_lower):
|
|
return self.save_4_lock
|
|
else:
|
|
print(word)
|
|
print("You have somehow went beyond the magic")
|
|
return self.save_5_lock.acquire()
|
|
|
|
# I have a test file (mytest.py) with pandas but couldn't figure out how to grab just a single cell.
|
|
# so I came up with this, if anyone knows how to get a single cell and can explain it to
|
|
# me I would love to know, as I think that method might be quicker, maybe, idk it like
|
|
# 4am
|
|
|
|
# retuns a dict of words/n-grams with their assosiated tf-idf score *can also return just a single score or a pandas dataframe
|
|
# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen
|
|
|
|
# Andy: added paramenter imporant_words in order to do multiplication of score
|
|
def get_tf_idf(self,words,word, important_words):
|
|
#tf_idf
|
|
#words = whole text
|
|
#word the word we finding the score for
|
|
#return the score
|
|
try:
|
|
'''
|
|
tfidf = TfidfVectorizer()
|
|
tfidf_matrix = tfidf.fit_transform(words)
|
|
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out())
|
|
score = df.iloc[0][''.join(word)]
|
|
for k,v in important_words.items():
|
|
if k == 'b' and word in v:
|
|
score = score * 1.2
|
|
elif k == 'h1' and word in v:
|
|
score = score * 1.75
|
|
elif k == 'h2' and word in v:
|
|
score = score * 1.5
|
|
elif k == 'h3' and word in v:
|
|
score = score * 1.2
|
|
elif k == 'title' and word in v:
|
|
score = score * 2
|
|
return(score)
|
|
#print(df)
|
|
except KeyError:
|
|
return -1
|
|
'''
|
|
try:
|
|
tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
|
|
tfidf_matrix = tfidf.fit_transform(words) # fit trains the model, transform creates matrix
|
|
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
|
|
#return(df.iloc[0][''.join(word)]) #used for finding single word in dataset
|
|
tfidf_dict = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
|
|
return tfidf_dict # returns the dict of words/n-grams with tf-idf as value
|
|
#print(df) # debugging
|
|
except:
|
|
print("Error in tf_idf!")
|
|
return
|
|
|
|
|
|
def get_data(self):
|
|
|
|
num_threads = 1
|
|
threads = list()
|
|
|
|
for directory in os.listdir(self.path):
|
|
for file in os.listdir(self.path + "/" + directory + "/"):
|
|
#Actual files here
|
|
#JSON["url"] = url of crawled page, ignore fragments
|
|
#JSON["content"] = actual HTML
|
|
#JSON["encoding"] = ENCODING
|
|
index = 0
|
|
while True:
|
|
file_path = self.path + "" + directory + "/"+file
|
|
if len(threads) < num_threads:
|
|
thread = Worker(self,file_path)
|
|
threads.append(thread)
|
|
thread.start()
|
|
break
|
|
else:
|
|
if not threads[index].is_alive():
|
|
threads[index] = Worker(self,file_path)
|
|
threads[index].start()
|
|
break
|
|
else:
|
|
index = index + 1
|
|
if(index >= num_threads):
|
|
index = 0
|
|
time.sleep(.1)
|
|
|
|
#Found 55770 documents
|
|
#
|
|
|
|
#getting important tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
indexer = Indexer(True,0)
|
|
indexer.get_data()
|
|
|
|
if __name__ == "__main__":
|
|
main()
|