8 Commits

Author SHA1 Message Date
Aaron
e7c4170cc2 Update indexer.py
had incorrect implementation
2022-05-12 17:58:31 -07:00
inocturnis
c4b3512df7 Changed tf_idf model into the new one, try it on the current dataset 2022-05-12 15:00:09 -07:00
iNocturnis
c8640001c7 Merge branch 'tf_idf' 2022-05-12 14:30:22 -07:00
inocturnis
f1fe3b26ac Merged with weighting but cannot implement due to tokens being messy and some comparison error 2022-05-06 20:45:52 -07:00
iNocturnis
5c703b6471 Merge remote-tracking branch 'origin/posting' 2022-05-06 20:26:03 -07:00
inocturnis
c892bbac03 Changed counter for tf to one doing O(n) instead of O(n^2), included multi-threading to speed up processing speed 2022-05-06 20:22:52 -07:00
unknown
efb2c4e2a8 added important tokens 2022-05-06 17:19:37 -07:00
unknown
c616b37432 added important tokens 2022-05-06 17:18:34 -07:00
4 changed files with 238 additions and 62 deletions

30
importanttext.py Normal file
View File

@@ -0,0 +1,30 @@
# You can ignore this file. This was for testing purposes
import json
import os
import shelve
from bs4 import BeautifulSoup
from time import perf_counter
import requests
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
import numpy as np
path_to_script = os.path.dirname(os.path.abspath(__file__))
my_filename = os.path.join(path_to_script, "testfile.json")
url = "https://www.crummy.com/software/BeautifulSoup/bs4/doc/"
req = requests.get(url)
file = open('D:/Visual Studio Workspace/CS121/assignment3/Search_Engine/testfile.json')
content = json.load(file)
soup = BeautifulSoup(content["content"], 'lxml')
bold = []
#print(soup.prettify())
print(soup.findAll('h3'))
for i in soup.findAll('title'):
print(word_tokenize(i.text))
print(bold)

View File

@@ -15,7 +15,8 @@ import os
import shelve
from bs4 import BeautifulSoup
from time import perf_counter
import time
import threading
#Data process
@@ -29,6 +30,7 @@ import re
#Logging postings
from posting import Posting
from worker import Worker
class Indexer():
@@ -61,16 +63,27 @@ class Indexer():
self.save_1 = shelve.open("save_1.shelve")
self.save_1_lock = threading.Lock()
self.save_2 = shelve.open("save_2.shelve")
self.save_2_lock = threading.Lock()
self.save_3 = shelve.open("save_3.shelve")
self.save_3_lock = threading.Lock()
self.save_4 = shelve.open("save_4.shelve")
self.save_4_lock = threading.Lock()
self.save_5 = shelve.open("save_5.shelve")
self.save_5_lock = threading.Lock()
print(len(list(self.save_1.keys())))
print(len(list(self.save_2.keys())))
print(len(list(self.save_3.keys())))
print(len(list(self.save_4.keys())))
print(len(list(self.save_5.keys())))
def save_index(self,word,posting):
cur_save = self.get_save_file(word)
lock = self.get_save_lock(word)
lock.acquire()
shelve_list = list()
try:
shelve_list = cur_save[word]
shelve_list.append(posting)
@@ -80,10 +93,12 @@ class Indexer():
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to sort shelve list !")
cur_save.sync()
lock.release()
except:
shelve_list.append(posting)
cur_save[word] = shelve_list
cur_save.sync()
lock.release()
def get_save_file(self,word):
#return the correct save depending on the starting letter of word
@@ -102,20 +117,64 @@ class Indexer():
print("You have somehow went beyond the magic")
return self.save_5
def get_save_lock(self,word):
word_lower = word.lower()
if re.match(r"^[a-d0-1].*",word_lower):
return self.save_1_lock
elif re.match(r"^[e-k2-3].*",word_lower):
return self.save_2_lock
elif re.match(r"^[l-q4-7].*",word_lower):
return self.save_3_lock
elif re.match(r"^[r-z8-9].*",word_lower):
return self.save_4_lock
else:
print(word)
print("You have somehow went beyond the magic")
return self.save_5_lock.acquire()
# I have a test file (mytest.py) with pandas but couldn't figure out how to grab just a single cell.
# so I came up with this, if anyone knows how to get a single cell and can explain it to
# me I would love to know, as I think that method might be quicker, maybe, idk it like
# 4am
# retuns a dict of words/n-grams with their assosiated tf-idf score *can also return just a single score or a pandas dataframe
# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen
def get_tf_idf(self,words,word):
# Andy: added paramenter imporant_words in order to do multiplication of score
def get_tf_idf(self,words,word, important_words):
#tf_idf
#words = whole text
#word the word we finding the score for
#return the score
try:
'''
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(words)
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out())
score = df.iloc[0][''.join(word)]
for k,v in important_words.items():
if k == 'b' and word in v:
score = score * 1.2
elif k == 'h1' and word in v:
score = score * 1.75
elif k == 'h2' and word in v:
score = score * 1.5
elif k == 'h3' and word in v:
score = score * 1.2
elif k == 'title' and word in v:
score = score * 2
return(score)
#print(df)
except KeyError:
return -1
'''
try:
tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
tfidf_matrix = tfidf.fit_transform(words) # fit trains the model, transform creates matrix
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
#return(df.iloc[0][''.join(word)]) #used for finding single word in dataset
data = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
return data # returns the dict of words/n-grams with tf-idf
tfidf_dict = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
return tfidf_dict # returns the dict of words/n-grams with tf-idf as value
#print(df) # debugging
except:
print("Error in tf_idf!")
@@ -123,69 +182,41 @@ class Indexer():
def get_data(self):
num_threads = 1
threads = list()
for directory in os.listdir(self.path):
for file in os.listdir(self.path + "/" + directory + "/"):
#Actual files here
#JSON["url"] = url of crawled page, ignore fragments
#JSON["content"] = actual HTML
#JSON["encoding"] = ENCODING
ticker = perf_counter()
tic = perf_counter()
file_load = open(self.path + "/" + directory + "/"+file)
data = json.load(file_load)
soup = BeautifulSoup(data["content"],from_encoding=data["encoding"])
words = word_tokenize(soup.get_text())
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tokenize text !")
index = 0
while True:
file_path = self.path + "" + directory + "/"+file
if len(threads) < num_threads:
thread = Worker(self,file_path)
threads.append(thread)
thread.start()
break
else:
if not threads[index].is_alive():
threads[index] = Worker(self,file_path)
threads[index].start()
break
else:
index = index + 1
if(index >= num_threads):
index = 0
time.sleep(.1)
tokenized_words = list()
stemmed_words = list()
#Found 55770 documents
#
tic = perf_counter()
for word in words:
if word != "" and re.fullmatch('[A-Za-z0-9]+',word):
#So all the tokenized words are here,
tokenized_words.append(word)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to isalnum text !")
#YOUR CODE HERE
#getting important tokens
tic = perf_counter()
for word in tokenized_words:
stemmed_words.append(self.stemmer.stem(word))
#stemming,
#tf_idf
#get_tf_idf(stemmed_words,word)
#post = Posting()
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to stemmed text !")
for word in stemmed_words:
#posting = Posting(data["url"],self.get_tf_idf(list(' '.join(stemmed_words)),word))
tic = perf_counter()
posting = Posting(data["url"],self.tf_idf_raw(stemmed_words,word))
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tf_idf text !")
tic = perf_counter()
self.save_index(word,posting)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to save text !")
tocker = perf_counter()
print("Finished " + data['url'] + " in \t " + str(tocker-ticker))
def tf_idf_raw(self,words,word):
tf_times = words.count(word)
tf = tf_times/len(words)
return tf

1
testfile.json Normal file

File diff suppressed because one or more lines are too long

114
worker.py Normal file
View File

@@ -0,0 +1,114 @@
from threading import Thread
import json
import os
import shelve
from bs4 import BeautifulSoup
from time import perf_counter
import time
import re
#Data process
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
import numpy as np
from collections import Counter
from posting import Posting
import sys
class Worker(Thread):
def __init__(self,indexer,target):
self.file = target
self.indexer = indexer
super().__init__(daemon=True)
def run(self):
print("Target: " + str(self.file))
ticker = perf_counter()
tic = perf_counter()
file_load = open(self.file)
data = json.load(file_load)
soup = BeautifulSoup(data["content"],features="lxml")
words = word_tokenize(soup.get_text())
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tokenize text !")
tokenized_words = list()
stemmed_words = list()
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
for key_words in important.keys():
for i in soup.findAll(key_words):
for word in word_tokenize(i.text):
important[key_words].append(self.indexer.stemmer.stem(word))
tic = perf_counter()
for word in words:
if word != "" and re.fullmatch('[A-Za-z0-9]+',word):
tokenized_words.append(word)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to isalnum text !")
tic = perf_counter()
for word in tokenized_words:
stemmed_words.append(self.indexer.stemmer.stem(word))
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to stemmed text !")
"""
tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
tfidf_matrix = tfidf.fit_transform(stemmed_words) # fit trains the model, transform creates matrix
#df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
tfidf.sget_feature_names_out()
#tf_idf_dict = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
print(tfidf_matrix)
"""
tfIdfVectorizer=TfidfVectorizer(use_idf=True)
tfIdf = tfIdfVectorizer.fit_transform(stemmed_words)
df = pd.DataFrame(tfIdf[0].T.todense(), index=tfIdfVectorizer.get_feature_names_out(), columns=["TF-IDF"])
df = df.sort_values('TF-IDF', ascending=False)
print(df.head(25))
for word in tf_idf_dict.keys():
tic = perf_counter()
print(tf_idf_dict)
weight = 1.0
for k,v in important.items():
if k == 'b' and word in v:
weight = 1.2
elif k == 'h1' and word in v:
weight = 1.75
elif k == 'h2' and word in v:
weight = 1.5
elif k == 'h3' and word in v:
weight = 1.2
elif k == 'title' and word in v:
weight = 2
posting = Posting(data["url"],tf_idf_dict[word]*weight)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tf_idf text !")
tic = perf_counter()
self.indexer.save_index(word,posting)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to save text !")
tocker = perf_counter()
print("Finished " + data['url'] + "\n" + str(tocker-ticker))