Compare commits
7 Commits
posting
...
Lacerum-pa
Author | SHA1 | Date | |
---|---|---|---|
![]() |
e7c4170cc2 | ||
![]() |
c4b3512df7 | ||
![]() |
c8640001c7 | ||
![]() |
f5610eaa62 | ||
![]() |
f1fe3b26ac | ||
![]() |
5c703b6471 | ||
![]() |
c892bbac03 |
137
indexer.py
137
indexer.py
@@ -15,7 +15,8 @@ import os
|
||||
import shelve
|
||||
from bs4 import BeautifulSoup
|
||||
from time import perf_counter
|
||||
|
||||
import time
|
||||
import threading
|
||||
|
||||
|
||||
#Data process
|
||||
@@ -29,6 +30,7 @@ import re
|
||||
|
||||
#Logging postings
|
||||
from posting import Posting
|
||||
from worker import Worker
|
||||
|
||||
|
||||
class Indexer():
|
||||
@@ -61,16 +63,27 @@ class Indexer():
|
||||
|
||||
|
||||
self.save_1 = shelve.open("save_1.shelve")
|
||||
self.save_1_lock = threading.Lock()
|
||||
self.save_2 = shelve.open("save_2.shelve")
|
||||
self.save_2_lock = threading.Lock()
|
||||
self.save_3 = shelve.open("save_3.shelve")
|
||||
self.save_3_lock = threading.Lock()
|
||||
self.save_4 = shelve.open("save_4.shelve")
|
||||
self.save_4_lock = threading.Lock()
|
||||
self.save_5 = shelve.open("save_5.shelve")
|
||||
self.save_5_lock = threading.Lock()
|
||||
|
||||
print(len(list(self.save_1.keys())))
|
||||
print(len(list(self.save_2.keys())))
|
||||
print(len(list(self.save_3.keys())))
|
||||
print(len(list(self.save_4.keys())))
|
||||
print(len(list(self.save_5.keys())))
|
||||
|
||||
def save_index(self,word,posting):
|
||||
cur_save = self.get_save_file(word)
|
||||
lock = self.get_save_lock(word)
|
||||
lock.acquire()
|
||||
shelve_list = list()
|
||||
|
||||
try:
|
||||
shelve_list = cur_save[word]
|
||||
shelve_list.append(posting)
|
||||
@@ -80,10 +93,12 @@ class Indexer():
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to sort shelve list !")
|
||||
cur_save.sync()
|
||||
lock.release()
|
||||
except:
|
||||
shelve_list.append(posting)
|
||||
cur_save[word] = shelve_list
|
||||
cur_save.sync()
|
||||
lock.release()
|
||||
|
||||
def get_save_file(self,word):
|
||||
#return the correct save depending on the starting letter of word
|
||||
@@ -102,10 +117,27 @@ class Indexer():
|
||||
print("You have somehow went beyond the magic")
|
||||
return self.save_5
|
||||
|
||||
def get_save_lock(self,word):
|
||||
word_lower = word.lower()
|
||||
if re.match(r"^[a-d0-1].*",word_lower):
|
||||
return self.save_1_lock
|
||||
elif re.match(r"^[e-k2-3].*",word_lower):
|
||||
return self.save_2_lock
|
||||
elif re.match(r"^[l-q4-7].*",word_lower):
|
||||
return self.save_3_lock
|
||||
elif re.match(r"^[r-z8-9].*",word_lower):
|
||||
return self.save_4_lock
|
||||
else:
|
||||
print(word)
|
||||
print("You have somehow went beyond the magic")
|
||||
return self.save_5_lock.acquire()
|
||||
|
||||
# I have a test file (mytest.py) with pandas but couldn't figure out how to grab just a single cell.
|
||||
# so I came up with this, if anyone knows how to get a single cell and can explain it to
|
||||
# me I would love to know, as I think that method might be quicker, maybe, idk it like
|
||||
# 4am
|
||||
|
||||
# retuns a dict of words/n-grams with their assosiated tf-idf score *can also return just a single score or a pandas dataframe
|
||||
# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen
|
||||
|
||||
# Andy: added paramenter imporant_words in order to do multiplication of score
|
||||
@@ -115,6 +147,7 @@ class Indexer():
|
||||
#word the word we finding the score for
|
||||
#return the score
|
||||
try:
|
||||
'''
|
||||
tfidf = TfidfVectorizer()
|
||||
tfidf_matrix = tfidf.fit_transform(words)
|
||||
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out())
|
||||
@@ -134,82 +167,56 @@ class Indexer():
|
||||
#print(df)
|
||||
except KeyError:
|
||||
return -1
|
||||
'''
|
||||
try:
|
||||
tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
|
||||
tfidf_matrix = tfidf.fit_transform(words) # fit trains the model, transform creates matrix
|
||||
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
|
||||
#return(df.iloc[0][''.join(word)]) #used for finding single word in dataset
|
||||
tfidf_dict = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
|
||||
return tfidf_dict # returns the dict of words/n-grams with tf-idf as value
|
||||
#print(df) # debugging
|
||||
except:
|
||||
print("Error in tf_idf!")
|
||||
return
|
||||
|
||||
|
||||
def get_data(self):
|
||||
|
||||
num_threads = 1
|
||||
threads = list()
|
||||
|
||||
for directory in os.listdir(self.path):
|
||||
for file in os.listdir(self.path + "/" + directory + "/"):
|
||||
#Actual files here
|
||||
#JSON["url"] = url of crawled page, ignore fragments
|
||||
#JSON["content"] = actual HTML
|
||||
#JSON["encoding"] = ENCODING
|
||||
ticker = perf_counter()
|
||||
tic = perf_counter()
|
||||
file_load = open(self.path + "/" + directory + "/"+file)
|
||||
data = json.load(file_load)
|
||||
soup = BeautifulSoup(data["content"],from_encoding=data["encoding"])
|
||||
words = word_tokenize(soup.get_text())
|
||||
index = 0
|
||||
while True:
|
||||
file_path = self.path + "" + directory + "/"+file
|
||||
if len(threads) < num_threads:
|
||||
thread = Worker(self,file_path)
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
break
|
||||
else:
|
||||
if not threads[index].is_alive():
|
||||
threads[index] = Worker(self,file_path)
|
||||
threads[index].start()
|
||||
break
|
||||
else:
|
||||
index = index + 1
|
||||
if(index >= num_threads):
|
||||
index = 0
|
||||
time.sleep(.1)
|
||||
|
||||
#Found 55770 documents
|
||||
#
|
||||
|
||||
#getting important tokens
|
||||
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
|
||||
for type in important.keys():
|
||||
for i in soup.findAll(type):
|
||||
for word in word_tokenize(i.text):
|
||||
important[type].append(self.stemmer.stem(word))
|
||||
|
||||
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to tokenize text !")
|
||||
|
||||
tokenized_words = list()
|
||||
stemmed_words = list()
|
||||
|
||||
tic = perf_counter()
|
||||
for word in words:
|
||||
if word != "" and re.fullmatch('[A-Za-z0-9]+',word):
|
||||
#So all the tokenized words are here,
|
||||
tokenized_words.append(word)
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to isalnum text !")
|
||||
#YOUR CODE HERE
|
||||
|
||||
tic = perf_counter()
|
||||
for word in tokenized_words:
|
||||
stemmed_words.append(self.stemmer.stem(word))
|
||||
#stemming,
|
||||
#tf_idf
|
||||
#get_tf_idf(stemmed_words,word)
|
||||
#post = Posting()
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to stemmed text !")
|
||||
|
||||
for word in stemmed_words:
|
||||
#posting = Posting(data["url"],self.get_tf_idf(list(' '.join(stemmed_words)),word))
|
||||
tic = perf_counter()
|
||||
#added argument important
|
||||
posting = Posting(data["url"],self.tf_idf_raw(stemmed_words,word, important))
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to tf_idf text !")
|
||||
|
||||
tic = perf_counter()
|
||||
self.save_index(word,posting)
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to save text !")
|
||||
|
||||
tocker = perf_counter()
|
||||
print("Finished " + data['url'] + " in \t " + str(tocker-ticker))
|
||||
|
||||
def tf_idf_raw(self,words,word):
|
||||
tf_times = words.count(word)
|
||||
|
||||
tf = tf_times/len(words)
|
||||
|
||||
return tf
|
||||
|
||||
|
||||
|
||||
|
10
mytest.py
10
mytest.py
@@ -4,6 +4,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
#tf_idf
|
||||
#words = whole text
|
||||
#word the word we finding the score for
|
||||
@@ -19,13 +20,12 @@ words = ['this is the first document '
|
||||
doc1 = ["I can't fucking take it any more. Among Us has singlehandedly ruined my life. The other day my teacher was teaching us Greek Mythology and he mentioned a pegasus and I immediately thought 'Pegasus? more like Mega Sus!!!!' and I've never wanted to kms more. I can't look at a vent without breaking down and fucking crying. I can't eat pasta without thinking 'IMPASTA??? THATS PRETTY SUS!!!!' Skit 4 by Kanye West. The lyrics ruined me. A Mongoose, or the 25th island of greece. The scientific name for pig. I can't fucking take it anymore. Please fucking end my suffering."]
|
||||
doc2 = ["Anyways, um... I bought a whole bunch of shungite rocks, do you know what shungite is? Anybody know what shungite is? No, not Suge Knight, I think he's locked up in prison. I'm talkin' shungite. Anyways, it's a two billion year-old like, rock stone that protects against frequencies and unwanted frequencies that may be traveling in the air. That's my story, I bought a whole bunch of stuff. Put 'em around the la casa. Little pyramids, stuff like that."]
|
||||
word = 'life'
|
||||
|
||||
try:
|
||||
tfidf = TfidfVectorizer()
|
||||
tfidf_matrix = tfidf.fit_transform(doc1)
|
||||
tfidf = TfidfVectorizer(ngram_range=(3,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
|
||||
tfidf_matrix = tfidf.fit_transform(words)
|
||||
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out())
|
||||
print(df.iloc[0][''.join(word)])
|
||||
#print(df)
|
||||
#print(df.iloc[0][''.join(word)])
|
||||
data = df.to_dict()
|
||||
except KeyError: # word does not exist
|
||||
print(-1)
|
||||
|
||||
|
114
worker.py
Normal file
114
worker.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from threading import Thread
|
||||
import json
|
||||
import os
|
||||
import shelve
|
||||
from bs4 import BeautifulSoup
|
||||
from time import perf_counter
|
||||
import time
|
||||
|
||||
import re
|
||||
|
||||
|
||||
#Data process
|
||||
from nltk.tokenize import word_tokenize
|
||||
from nltk.stem import PorterStemmer
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from collections import Counter
|
||||
|
||||
from posting import Posting
|
||||
|
||||
|
||||
import sys
|
||||
|
||||
class Worker(Thread):
|
||||
def __init__(self,indexer,target):
|
||||
self.file = target
|
||||
self.indexer = indexer
|
||||
super().__init__(daemon=True)
|
||||
|
||||
def run(self):
|
||||
print("Target: " + str(self.file))
|
||||
ticker = perf_counter()
|
||||
tic = perf_counter()
|
||||
file_load = open(self.file)
|
||||
data = json.load(file_load)
|
||||
soup = BeautifulSoup(data["content"],features="lxml")
|
||||
words = word_tokenize(soup.get_text())
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to tokenize text !")
|
||||
|
||||
tokenized_words = list()
|
||||
stemmed_words = list()
|
||||
|
||||
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
|
||||
for key_words in important.keys():
|
||||
for i in soup.findAll(key_words):
|
||||
for word in word_tokenize(i.text):
|
||||
important[key_words].append(self.indexer.stemmer.stem(word))
|
||||
|
||||
tic = perf_counter()
|
||||
for word in words:
|
||||
if word != "" and re.fullmatch('[A-Za-z0-9]+',word):
|
||||
tokenized_words.append(word)
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to isalnum text !")
|
||||
|
||||
tic = perf_counter()
|
||||
for word in tokenized_words:
|
||||
stemmed_words.append(self.indexer.stemmer.stem(word))
|
||||
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to stemmed text !")
|
||||
|
||||
"""
|
||||
tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
|
||||
tfidf_matrix = tfidf.fit_transform(stemmed_words) # fit trains the model, transform creates matrix
|
||||
#df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
|
||||
tfidf.sget_feature_names_out()
|
||||
#tf_idf_dict = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
|
||||
|
||||
print(tfidf_matrix)
|
||||
"""
|
||||
|
||||
tfIdfVectorizer=TfidfVectorizer(use_idf=True)
|
||||
tfIdf = tfIdfVectorizer.fit_transform(stemmed_words)
|
||||
df = pd.DataFrame(tfIdf[0].T.todense(), index=tfIdfVectorizer.get_feature_names_out(), columns=["TF-IDF"])
|
||||
df = df.sort_values('TF-IDF', ascending=False)
|
||||
|
||||
print(df.head(25))
|
||||
|
||||
for word in tf_idf_dict.keys():
|
||||
tic = perf_counter()
|
||||
print(tf_idf_dict)
|
||||
weight = 1.0
|
||||
for k,v in important.items():
|
||||
if k == 'b' and word in v:
|
||||
weight = 1.2
|
||||
elif k == 'h1' and word in v:
|
||||
weight = 1.75
|
||||
elif k == 'h2' and word in v:
|
||||
weight = 1.5
|
||||
elif k == 'h3' and word in v:
|
||||
weight = 1.2
|
||||
elif k == 'title' and word in v:
|
||||
weight = 2
|
||||
|
||||
posting = Posting(data["url"],tf_idf_dict[word]*weight)
|
||||
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to tf_idf text !")
|
||||
|
||||
tic = perf_counter()
|
||||
self.indexer.save_index(word,posting)
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to save text !")
|
||||
|
||||
tocker = perf_counter()
|
||||
print("Finished " + data['url'] + "\n" + str(tocker-ticker))
|
Reference in New Issue
Block a user