Same as previous push
This commit is contained in:
		
							
								
								
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,3 +1,5 @@ | ||||
| /data/ | ||||
| *.shelve | ||||
| /__pycache__/ | ||||
| /test/ | ||||
| merged* | ||||
|   | ||||
							
								
								
									
										1
									
								
								docs.weight
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								docs.weight
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										375
									
								
								indexer.py
									
									
									
									
									
								
							
							
						
						
									
										375
									
								
								indexer.py
									
									
									
									
									
								
							| @@ -10,7 +10,6 @@ | ||||
| #Posting ---> Source of file, tf-idf score. #for now we will only use these two, as we get more complex posting will be change accordingly | ||||
|  | ||||
| #Data input | ||||
| import math | ||||
| import json | ||||
| import os | ||||
| import shelve | ||||
| @@ -18,7 +17,8 @@ from bs4 import BeautifulSoup | ||||
| from time import perf_counter | ||||
| import time | ||||
| import threading | ||||
| import pickle | ||||
| from threading import Lock | ||||
| import math | ||||
|  | ||||
|  | ||||
| #Data process | ||||
| @@ -34,235 +34,196 @@ import re | ||||
| from posting import Posting | ||||
| from worker import Worker | ||||
|  | ||||
| class Node(): | ||||
| 	index_value = '' | ||||
| 	postings = list() | ||||
|  | ||||
| class Index(): | ||||
| 	length = 0 | ||||
| 	index = list() | ||||
|  | ||||
| class Indexer(): | ||||
| 	def __init__(self,restart,trimming): | ||||
| 	def __init__(self,list_partials,weight,data_paths,worker_factory=Worker): | ||||
| 		#Config stuffs | ||||
| 		self.path = "D:/Visual Studio Workspace/CS121/assignment3/data/DEV/" | ||||
| 		self.restart = restart | ||||
| 		self.trimming = trimming | ||||
| 		self.path = "data/DEV" | ||||
| 		self.num_doc = 0 | ||||
| 		self.list_partials = list_partials | ||||
| 		self.weight = weight | ||||
| 		self.data_paths = data_paths | ||||
| 		self.stemmer = PorterStemmer() | ||||
| 		self.id = list() | ||||
| 		# list that contains the denominator for normalization before taking the square root of it. square root will be taken during query time | ||||
| 		self.normalize = list() | ||||
| 		self.data_paths_lock = Lock() | ||||
| 		self.list_partials_lock = Lock() | ||||
| 		 | ||||
| 		#Shelves for index | ||||
| 		#https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html | ||||
| 		#https://www.irishtimes.com/news/science/how-many-numbers-begin-with-a-1-more-than-30-per-cent-1.4162466 | ||||
| 		#According to this will be how we split things | ||||
| 		#Save #1 = ABCD + (1) ~ 18.3% of words | ||||
| 		#Save #2 = EFGHIJK + (2-3)~ 27.1% of words | ||||
| 		#Save #3 = LMNOPQ + (4-7) ~ 25.4% of words | ||||
| 		#Save #4 = RSTUVWXYZ + (8-9)~ 29.2% of words | ||||
| 		#Save #5 = Special characters | ||||
| 		if os.path.exists("save_1.shelve") and restart: | ||||
| 			os.remove("save_1.shelve") | ||||
| 		if os.path.exists("save_2.shelve") and restart: | ||||
| 			os.remove("save_2.shelve") | ||||
| 		if os.path.exists("save_3.shelve") and restart: | ||||
| 			os.remove("save_3.shelve") | ||||
| 		if os.path.exists("save_4.shelve") and restart: | ||||
| 			os.remove("save_4.shelve") | ||||
| 		if os.path.exists("save_5.shelve") and restart: | ||||
| 			os.remove("save_5.shelve") | ||||
| 		self.workers = list() | ||||
| 		self.worker_factory = worker_factory | ||||
|  | ||||
|  | ||||
| 		self.save_1 = shelve.open("save_1.shelve") | ||||
| 		self.save_1_lock = threading.Lock() | ||||
| 		self.save_2 = shelve.open("save_2.shelve") | ||||
| 		self.save_2_lock = threading.Lock() | ||||
| 		self.save_3 = shelve.open("save_3.shelve") | ||||
| 		self.save_3_lock = threading.Lock() | ||||
| 		self.save_4 = shelve.open("save_4.shelve") | ||||
| 		self.save_4_lock = threading.Lock() | ||||
| 		self.save_5 = shelve.open("save_5.shelve") | ||||
| 		self.save_5_lock = threading.Lock() | ||||
| 	def start_async(self): | ||||
| 		self.workers = [ | ||||
| 			self.worker_factory(worker_id,self) | ||||
| 			for worker_id in range(8)] | ||||
| 		for worker in self.workers: | ||||
| 			worker.start() | ||||
|  | ||||
| 		print(len(list(self.save_1.keys()))) | ||||
| 		print(len(list(self.save_2.keys()))) | ||||
| 		print(len(list(self.save_3.keys()))) | ||||
| 		print(len(list(self.save_4.keys()))) | ||||
| 		print(len(list(self.save_5.keys()))) | ||||
| 	def start(self): | ||||
| 		self.start_async() | ||||
| 		self.join() | ||||
|  | ||||
| 	def get_url_id(self, url): | ||||
| 		return self.id.index(url) | ||||
|  | ||||
| 	def save_index(self,word,posting): | ||||
| 		cur_save = self.get_save_file(word) | ||||
| 		lock = self.get_save_lock(word) | ||||
| 		lock.acquire() | ||||
| 		shelve_list = list() | ||||
| 		try: | ||||
| 			shelve_list = cur_save[word] | ||||
| 			shelve_list.append(posting) | ||||
| 			tic = perf_counter() | ||||
| 			# Sort by url id to help with query search | ||||
| 			shelve_list.sort(key=lambda x: x.url) | ||||
| 			# shelve_list.sort(key=lambda x: x.tf_idf, reverse = True) | ||||
| 			toc = perf_counter() | ||||
| 			if toc - tic > 1 : | ||||
| 				print("Took " + str(toc - tic) + "seconds to sort shelve list !") | ||||
| 			cur_save.sync() | ||||
| 			lock.release() | ||||
| 		except: | ||||
| 			shelve_list.append(posting) | ||||
| 			cur_save[word] = shelve_list | ||||
| 			cur_save.sync() | ||||
| 			lock.release() | ||||
|  | ||||
| 	def get_save_file(self,word): | ||||
| 		#return the correct save depending on the starting letter of word | ||||
| 		word_lower = word.lower() | ||||
|  | ||||
| 		if re.match(r"^[a-d0-1].*",word_lower): | ||||
| 			return self.save_1 | ||||
| 		elif re.match(r"^[e-k2-3].*",word_lower): | ||||
| 			return self.save_2 | ||||
| 		elif re.match(r"^[l-q4-7].*",word_lower): | ||||
| 			return self.save_3 | ||||
| 		elif re.match(r"^[r-z8-9].*",word_lower): | ||||
| 			return self.save_4 | ||||
| 		else: | ||||
| 			print(word) | ||||
| 			print("You have somehow went beyond the magic") | ||||
| 			return self.save_5 | ||||
|  | ||||
| 	def get_save_lock(self,word): | ||||
| 		word_lower = word.lower() | ||||
| 		if re.match(r"^[a-d0-1].*",word_lower): | ||||
| 			return self.save_1_lock | ||||
| 		elif re.match(r"^[e-k2-3].*",word_lower): | ||||
| 			return self.save_2_lock | ||||
| 		elif re.match(r"^[l-q4-7].*",word_lower): | ||||
| 			return self.save_3_lock | ||||
| 		elif re.match(r"^[r-z8-9].*",word_lower): | ||||
| 			return self.save_4_lock | ||||
| 		else: | ||||
| 			print(word) | ||||
| 			print("You have somehow went beyond the magic") | ||||
| 			return self.save_5_lock.acquire() | ||||
| 	# I have a test file (mytest.py) with pandas but couldn't figure out how to grab just a single cell. | ||||
| 	# so I came up with this, if anyone knows how to get a single cell and can explain it to | ||||
| 	# me I would love to know, as I think that method might be quicker, maybe, idk it like | ||||
| 	# 4am | ||||
| 	# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen | ||||
|  | ||||
| 	# removed parameter "word" since it wasn't used | ||||
| 	# TODO: Add important words scaling | ||||
| 	def get_tf_idf(self, words): | ||||
| 		# words = [whole text] one element list | ||||
| 		# return the score | ||||
| 		try: | ||||
| 			tfidf = TfidfVectorizer(ngram_range=(1,1)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams | ||||
| 			tfidf_matrix = tfidf.fit_transform(words)  # fit trains the model, transform creates matrix | ||||
| 			df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram | ||||
| 			#return(df.iloc[0][''.join(word)]) #used for finding single word in dataset | ||||
| 			data = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run | ||||
| 			return data			# returns the dict of words/n-grams with tf-idf | ||||
| 			#print(df)			# debugging  | ||||
| 		except: 		 | ||||
| 			print("Error in tf_idf!") | ||||
| 			return -1 | ||||
| 	 | ||||
| 	def tf(self, text, url): | ||||
| 		# tf | ||||
| 		tokens = {} | ||||
| 		split = text.split(" ") | ||||
| 		# loop using index to keep track of position | ||||
| 		for i in range(len(split)): | ||||
| 			if split[i] not in tokens: | ||||
| 				tokens[split[i]] = Posting(self.get_url_id(url), 1, i) | ||||
| 			else: | ||||
| 				tokens[split[i]].rtf += 1 | ||||
| 				tokens[split[i]].tf = (1 + math.log(tokens[split[i]].rtf)) | ||||
| 				tokens[split[i]].positions.append(i) | ||||
| 		return tokens | ||||
|  | ||||
| 	# Does the idf part of the tfidf | ||||
| 	def tfidf(self, current_save): | ||||
| 		for token, postings in current_save.items(): | ||||
| 			for p in postings: | ||||
| 				p.tfidf = p.tf * math.log(len(self.id)/len(postings)) | ||||
| 				self.normalize[p.url] += p.tfidf**2 | ||||
| 	def join(self): | ||||
| 		for worker in self.workers: | ||||
| 			worker.join() | ||||
|  | ||||
|  | ||||
| 	def get_data(self): | ||||
| 	def get_postings(self,index): | ||||
| 		merged_index_index = open("merged_index.index" ,'r') | ||||
| 		merged_index = open("merged_index.full",'r') | ||||
| 		merged_index_index.seek(0,0) | ||||
| 		json_value = merged_index_index.readline() | ||||
| 		data = json.loads(json_value) | ||||
| 		index_index = dict(data['index']) | ||||
| 		to_seek = index_index[index] | ||||
| 		merged_index.seek(to_seek,0) | ||||
| 		json_value = merged_index.readline() | ||||
| 		data = json.loads(json_value) | ||||
| 		return data['postings'] | ||||
|  | ||||
| 		num_threads = 8 | ||||
| 		threads = list() | ||||
| 	def set_weight(self): | ||||
| 		weight_file = open('docs.weight','w') | ||||
| 		jsonStr =json.dumps(self.weight, default=lambda o: o.__dict__,sort_keys=False) | ||||
| 		weight_file.write(jsonStr) | ||||
| 		weight_file.close() | ||||
|  | ||||
| 	def get_weight(self,doc_id): | ||||
| 		weight = open('docs.weight','r') | ||||
| 		weight.seek(0,0) | ||||
| 		json_value = weight.readline() | ||||
| 		data = json.loads(json_value) | ||||
| 		return data[doc_id] | ||||
|  | ||||
| 	def get_data_path(self): | ||||
| 		for directory in os.listdir(self.path): | ||||
| 			for file in os.listdir(self.path + "/" + directory + "/"): | ||||
| 				#Actual files here | ||||
| 				#JSON["url"] = url of crawled page, ignore fragments | ||||
| 				#JSON["content"] = actual HTML | ||||
| 				#JSON["encoding"] = ENCODING | ||||
| 				index = 0 | ||||
| 				while True: | ||||
| 					file_path = self.path + "" + directory + "/"+file | ||||
| 					# Add url to id here so that there isn't any problems when worker is multi-threaded | ||||
| 				self.data_paths.append("data/DEV/" + directory + "/"+file) | ||||
| 		self.num_doc = len(self.data_paths) | ||||
|  | ||||
| 					tic = perf_counter() | ||||
| 					load = open(file_path) | ||||
| 					data = json.load(load) | ||||
| 					if data["url"] not in self.id: | ||||
| 						self.id.append(data["url"]) | ||||
| 					toc = perf_counter() | ||||
| 					print("Took " + str(toc - tic) + " seconds to save url to self.id") | ||||
| 	def get_next_file(self): | ||||
| 		self.data_paths_lock.acquire() | ||||
| 		try: | ||||
| 			holder = self.data_paths.pop() | ||||
| 			self.data_paths_lock.release() | ||||
| 			return holder | ||||
| 		except IndexError: | ||||
| 			self.data_paths_lock.release() | ||||
| 			return None | ||||
| 	 | ||||
| 					if len(threads) < num_threads: | ||||
| 						thread = Worker(self,file_path) | ||||
| 						threads.append(thread) | ||||
| 						thread.start() | ||||
| 						break | ||||
| 					else: | ||||
| 						if not threads[index].is_alive(): | ||||
| 							threads[index] = Worker(self,file_path) | ||||
| 							threads[index].start() | ||||
| 							break | ||||
| 						else: | ||||
| 							index = index + 1 | ||||
| 							if(index >= num_threads): | ||||
| 								index = 0 | ||||
| 							time.sleep(.1) | ||||
| 		# Make a list the size of the corpus to keep track of document scores  | ||||
| 		self.normalize = [0] * len(self.id) | ||||
| 	def add_partial_index(self,partial_index): | ||||
| 		self.list_partials_lock.acquire() | ||||
| 		self.list_partials.append(partial_index) | ||||
| 		self.list_partials_lock.release() | ||||
|  | ||||
| 		# These last few function calls calculates idf and finalizes tf-idf weighting for each index | ||||
| 		self.tfidf(self.save_1) | ||||
| 		self.tfidf(self.save_2) | ||||
| 		self.tfidf(self.save_3) | ||||
| 		self.tfidf(self.save_4) | ||||
| 		self.tfidf(self.save_5) | ||||
| 		 | ||||
| 		# Creates a pickle file that is a list of urls where the index of the url is the id that the posting refers to. | ||||
| 		p = os.path.dirname(os.path.abspath(__file__)) | ||||
| 		my_filename = os.path.join(p, "urlID.pkl") | ||||
| 		if os.path.exists(my_filename): | ||||
| 			os.remove(my_filename) | ||||
| 		# Creates file and closes it | ||||
| 		f = open(my_filename, "wb") | ||||
| 		pickle.dump(self.id, f) | ||||
| 		f.close() | ||||
|  | ||||
| 		# Creates a pickle file that will contain the denominator (before the square root) for normalizing wt | ||||
| 		p = os.path.dirname(os.path.abspath(__file__)) | ||||
| 		my_filename = os.path.join(p, "normalize.pkl") | ||||
| 		if os.path.exists(my_filename): | ||||
| 			os.remove(my_filename) | ||||
| 		# Creates file and closes it | ||||
| 		f = open(my_filename, "wb") | ||||
| 		pickle.dump(self.normalize, f) | ||||
| 		f.close() | ||||
| 	#Found 55770 documents | ||||
| 	# | ||||
| 	#getting important tokens | ||||
|  | ||||
| 				#getting important tokens | ||||
| 	def merge(self): | ||||
| 		partial_files = list() | ||||
| 		partial_index_files = list() | ||||
| 		parital_index_indices = list() | ||||
| 		 | ||||
| 		num_indices = len(self.list_partials) | ||||
|  | ||||
| 		#Full Index.Index and Length | ||||
| 		full_index = Index() | ||||
| 		full_index.index = list() | ||||
| 		full_index.length = 0 | ||||
|  | ||||
| 		for partial_index in self.list_partials: | ||||
| 			file = open("temp/" + partial_index+'.partial','r') | ||||
| 			partial_files.append(file) | ||||
| 			index = open("temp/" + partial_index+'.index','r') | ||||
| 			partial_index_files.append(index) | ||||
|  | ||||
| 		for partial_index_file in partial_index_files: | ||||
| 			partial_index_file.seek(0,0) | ||||
| 			parital_index_indices.append(json.loads(partial_index_file.readline())) | ||||
|  | ||||
| 		#Start all indexes at 0 | ||||
| 		for partial_file in partial_files: | ||||
| 			partial_file.seek(0,0) | ||||
|  | ||||
| 		pointers = [0]*num_indices | ||||
| 		merged_index = open("merged_index.full",'w') | ||||
| 		merged_index_index = open("merged_index.index" ,'w') | ||||
|  | ||||
| 		while(True): | ||||
|  | ||||
| 			#Get all values from all indices to find min | ||||
| 			value = None | ||||
| 			values = list() | ||||
| 			for i in range(num_indices): | ||||
| 				if pointers[i] < parital_index_indices[i]['length']: | ||||
| 					values.append(parital_index_indices[i]['index'][pointers[i]][0]) | ||||
| 				 | ||||
| 			if(len(values) == 0): | ||||
| 				break | ||||
| 			value = min(values) | ||||
|  | ||||
| 			#Get data from the min value of all indices if exists then save to mergedIndex | ||||
| 			if value == None: | ||||
| 				print("I have crashed some how by not getting min value") | ||||
| 				break | ||||
|  | ||||
| 			node = Node() | ||||
| 			node.index_value = value | ||||
| 			for i in range(num_indices): | ||||
| 				if pointers[i] < parital_index_indices[i]['length'] and parital_index_indices[i]['index'][pointers[i]][0] == value: | ||||
| 					to_seek = parital_index_indices[i]['index'][pointers[i]][1] | ||||
| 					partial_files[i].seek(to_seek,0) | ||||
| 					json_value = partial_files[i].readline() | ||||
| 					temp_node = json.loads(json_value) | ||||
| 					node.postings = node.postings + temp_node['postings'] | ||||
| 					pointers[i] = pointers[i] + 1 | ||||
| 			#Change postings here with tf*idf idf = log (n/df(t))  | ||||
| 			node.postings.sort(key=lambda y:y['doc_id']) | ||||
| 			for posting in node.postings: | ||||
| 				posting['tf_idf'] = posting['tf_raw']*math.log(self.num_doc/len(node.postings)) | ||||
| 			full_index.index.append((value,merged_index.tell())) | ||||
| 			full_index.length = full_index.length + 1 | ||||
| 			jsonStr = json.dumps(node,default=lambda o: o.__dict__,sort_keys=False) | ||||
| 			merged_index.write(jsonStr + '\n') | ||||
|  | ||||
| 		full_index.index.sort(key=lambda y:y[0]) | ||||
| 		jsonStr =json.dumps(full_index, default=lambda o: o.__dict__,sort_keys=False) | ||||
| 		merged_index_index.write(jsonStr) | ||||
|  | ||||
| 		for partial_index in self.list_partials: | ||||
| 			os.remove("temp/" + partial_index+'.partial') | ||||
| 			os.remove("temp/" + partial_index+'.index') | ||||
|  | ||||
| 		merged_index_index.close() | ||||
| 		merged_index.close() | ||||
|  | ||||
|  | ||||
| def main(): | ||||
| 	indexer = Indexer(True,0) | ||||
| 	indexer.get_data() | ||||
| 	indexer = Indexer(list(),dict(),list()) | ||||
| 	indexer.get_data_path() | ||||
| 	print("We have " + str(len(indexer.data_paths)) + " documents to go through !" ) | ||||
| 	indexer.start() | ||||
| 	indexer.merge() | ||||
| 	print("Finished merging into 1 big happy family") | ||||
| 	indexer.set_weight() | ||||
|  | ||||
| 	tic = time.perf_counter() | ||||
| 	indexer.get_postings('artifici') | ||||
| 	toc = time.perf_counter() | ||||
| 	print(f"Took {toc - tic:0.4f} seconds to get postings for artifici") | ||||
| 	tic = time.perf_counter() | ||||
| 	indexer.get_weight('00ba3af6a00b7cfb4928e5d234342c5dc46b4e31714d4a8f315a2dd4d8e49860') | ||||
| 	print(f"Took {toc - tic:0.4f} seconds to get weight for some random page ") | ||||
| 	toc = time.perf_counter() | ||||
|  | ||||
| 	 | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
| 	main() | ||||
							
								
								
									
										10
									
								
								mytest.py
									
									
									
									
									
								
							
							
						
						
									
										10
									
								
								mytest.py
									
									
									
									
									
								
							| @@ -4,6 +4,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
|  | ||||
| #tf_idf | ||||
| #words = whole text | ||||
| #word the word we finding the score for | ||||
| @@ -19,13 +20,12 @@ words = ['this is the first document ' | ||||
| doc1 = ["I can't fucking take it any more. Among Us has singlehandedly ruined my life. The other day my teacher was teaching us Greek Mythology and he mentioned a pegasus and I immediately thought 'Pegasus? more like Mega Sus!!!!' and I've never wanted to kms more. I can't look at a vent without breaking down and fucking crying. I can't eat pasta without thinking 'IMPASTA??? THATS PRETTY SUS!!!!' Skit 4 by Kanye West. The lyrics ruined me. A Mongoose, or the 25th island of greece. The scientific name for pig. I can't fucking take it anymore. Please fucking end my suffering."] | ||||
| doc2 = ["Anyways, um... I bought a whole bunch of shungite rocks, do you know what shungite is? Anybody know what shungite is? No, not Suge Knight, I think he's locked up in prison. I'm talkin' shungite. Anyways, it's a two billion year-old like, rock stone that protects against frequencies and unwanted frequencies that may be traveling in the air. That's my story, I bought a whole bunch of stuff. Put 'em around the la casa. Little pyramids, stuff like that."] | ||||
| word = 'life' | ||||
|  | ||||
| try: | ||||
|     tfidf = TfidfVectorizer() | ||||
|     tfidf_matrix = tfidf.fit_transform(doc1) | ||||
|     tfidf = TfidfVectorizer(ngram_range=(3,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams | ||||
|     tfidf_matrix = tfidf.fit_transform(words) | ||||
|     df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) | ||||
|     print(df.iloc[0][''.join(word)]) | ||||
|     #print(df) | ||||
|     #print(df.iloc[0][''.join(word)]) | ||||
|     data = df.to_dict() | ||||
| except KeyError: # word does not exist  | ||||
|     print(-1) | ||||
|  | ||||
|   | ||||
							
								
								
									
										18
									
								
								posting.py
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								posting.py
									
									
									
									
									
								
							| @@ -1,9 +1,17 @@ | ||||
| #Posting class for indexer, will probably be more complex as we keep adding crap to it | ||||
|  | ||||
| class Posting(): | ||||
| 	def __init__(self, url, rtf, position): | ||||
| 	def __init__(self,doc_id,url,tf_raw,tf_idf,positionals): | ||||
| 		self.doc_id = doc_id | ||||
| 		self.url = url | ||||
| 		self.rtf = rtf | ||||
| 		self.tf = 0 | ||||
| 		self.tfidf = 0 | ||||
| 		self.positions = [position] | ||||
| 		self.tf_raw = tf_raw | ||||
| 		self.tf_idf = tf_idf | ||||
| 		self.positionals = positionals | ||||
| 	def __repr__(self): | ||||
| 		return "Doc_id:" + str(self.doc_id) + " URL:" + self.url + " tf_raw:" + str(self.tf_raw) + " tf_idf:" + str(self.tf_idf) + " positionals:" + str(self.positionals) | ||||
| 	def __str__(self): | ||||
| 		return "Doc_id:" + str(self.doc_id) + " URL:" + self.url + " tf_raw:" + str(self.tf_raw) + " tf_idf:" + str(self.tf_idf) + " positionals:" + str(self.positionals) | ||||
|  | ||||
| 	def comparator(self): | ||||
| 		#Some custom comparator for sorting postings later | ||||
| 		pass | ||||
							
								
								
									
										18
									
								
								stemmer.py
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								stemmer.py
									
									
									
									
									
								
							| @@ -1,18 +0,0 @@ | ||||
| #Multiple implementation of stemming here please | ||||
| class Stemmer(): | ||||
|  | ||||
| 	def __init__(self,mode, data): | ||||
| 		#Different type of stemmer = different modes | ||||
| 		self.mode = mode | ||||
| 		self.data = data | ||||
|  | ||||
| 	def stem(self): | ||||
| 		#Do stuff here | ||||
| 		if(self.mode == 0): | ||||
| 			#Do stemmer 1 | ||||
| 			return #stemmed data | ||||
| 		#.... | ||||
|  | ||||
| 	def #name of stemmer 1 | ||||
|  | ||||
| 	def #name of stemmer 2 | ||||
| @@ -1,2 +0,0 @@ | ||||
|  | ||||
|     for postings in l_posting: | ||||
							
								
								
									
										26
									
								
								test.py
									
									
									
									
									
								
							
							
						
						
									
										26
									
								
								test.py
									
									
									
									
									
								
							| @@ -1,17 +1,13 @@ | ||||
| import re | ||||
| from threading import Thread | ||||
| import json | ||||
| import os | ||||
| import shelve | ||||
| import sys | ||||
| from bs4 import BeautifulSoup | ||||
| from time import perf_counter | ||||
| from nltk.stem import PorterStemmer | ||||
| import nltk | ||||
| import time | ||||
| from posting import Posting | ||||
|  | ||||
| for i in range(99): | ||||
| 	word_lower = chr(i % 26 + 97) + chr(i % 26 + 97 + 1) | ||||
| 	print(word_lower) | ||||
| 	if re.match(r"^[a-d1-1].*",word_lower): | ||||
| 		print("SAVE 1") | ||||
| 	elif re.match(r"^[e-k2-3].*",word_lower): | ||||
| 		print("SAVE 2") | ||||
| 	elif re.match(r"^[l-q4-7].*",word_lower): | ||||
| 		print("SAVE 3") | ||||
| 	elif re.match(r"^[r-z8-9].*",word_lower): | ||||
| 		print("SAVE 4") | ||||
|  | ||||
| path = "data/DEV/" | ||||
| print(os.listdir(path)) | ||||
| import re | ||||
|   | ||||
							
								
								
									
										28
									
								
								test1.py
									
									
									
									
									
								
							
							
						
						
									
										28
									
								
								test1.py
									
									
									
									
									
								
							| @@ -1,28 +0,0 @@ | ||||
| import json | ||||
| import os | ||||
| import shelve | ||||
| from bs4 import BeautifulSoup | ||||
| from time import perf_counter | ||||
| import time | ||||
| import threading | ||||
| import pickle | ||||
|  | ||||
|  | ||||
| #Data process | ||||
| from nltk.tokenize import word_tokenize | ||||
| from nltk.stem import PorterStemmer | ||||
| from sklearn.feature_extraction.text import TfidfVectorizer | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| from porter2stemmer import Porter2Stemmer | ||||
|  | ||||
| import re | ||||
|  | ||||
| save_1 = shelve.open("save_1.shelve") | ||||
| save_2 = shelve.open("save_2.shelve") | ||||
| save_3 = shelve.open("save_3.shelve") | ||||
| save_4 = shelve.open("save_4.shelve") | ||||
| save_5 = shelve.open("save_5.shelve") | ||||
|  | ||||
| key = list(save_1.keys()) | ||||
| print(key) | ||||
							
								
								
									
										116
									
								
								test_merge.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										116
									
								
								test_merge.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,116 @@ | ||||
| import json | ||||
| from posting import Posting | ||||
| import math | ||||
| import sys | ||||
| import random | ||||
| from nltk.corpus import words | ||||
| random_list = [1,2,3,4,5,6,7,8,9,10] | ||||
|  | ||||
|  | ||||
| test_data = words.words() | ||||
| random.shuffle(test_data) | ||||
|  | ||||
|  | ||||
| def random_posting(id): | ||||
| 	return Posting(id,random.choice(random_list),random.choice(random_list),[random.choice(random_list),random.choice(random_list),random.choice(random_list),random.choice(random_list), | ||||
| 	random.choice(random_list),random.choice(random_list),random.choice(random_list),random.choice(random_list)]) | ||||
|  | ||||
| class Node(): | ||||
| 	index_value = 'Something' | ||||
| 	postings = list() | ||||
|  | ||||
| class Index(): | ||||
| 	length = 0 | ||||
| 	index = list() | ||||
|  | ||||
| def random_partial_index(name): | ||||
| 	part_index = Index() | ||||
| 	part_index.index = list() | ||||
| 	part_index.length = 0 | ||||
| 	with open(name +'.partial', 'w') as f: | ||||
| 		for i in range(1000): | ||||
|  | ||||
| 			node1 = Node() | ||||
| 			node1.index_value = random.choice(test_data).lower() | ||||
| 			node1.postings = list() | ||||
| 			for i in range(10): | ||||
| 				node1.postings.append(random_posting(i)) | ||||
|  | ||||
| 			jsonStr = json.dumps(node1, default=lambda o: o.__dict__,sort_keys=False) | ||||
| 			 | ||||
| 			part_index.index.append((node1.index_value,f.tell())) | ||||
| 			f.write(jsonStr + '\n') | ||||
| 			part_index.length = part_index.length + 1 | ||||
|  | ||||
| 	part_index.index.sort(key=lambda y:y[0]) | ||||
| 	jsonStr =json.dumps(part_index, default=lambda o: o.__dict__,sort_keys=False) | ||||
| 	with open(name + '.index','w') as f: | ||||
| 		f.write(jsonStr) | ||||
|  | ||||
| def merge(partial_indices): | ||||
| 	partial_files = list() | ||||
| 	partial_index_files = list() | ||||
| 	parital_index_indices = list() | ||||
| 	merged_index = open("merged_index.full",'w') | ||||
| 	num_indices = len(partial_indices) | ||||
|  | ||||
| 	#Full Index.Index and Length | ||||
| 	full_index = Index() | ||||
| 	full_index.index = list() | ||||
| 	full_index.length = 0 | ||||
|  | ||||
| 	for partial_index in partial_indices: | ||||
| 		file = open(partial_index+'.partial','r') | ||||
| 		partial_files.append(file) | ||||
| 		index = open(partial_index+'.index','r') | ||||
| 		partial_index_files.append(index) | ||||
|  | ||||
| 	for partial_index_file in partial_index_files: | ||||
| 		partial_index_file.seek(0,0) | ||||
| 		parital_index_indices.append(json.loads(partial_index_file.readline())) | ||||
|  | ||||
| 	#Start all indexes at 0 | ||||
| 	for partial_file in partial_files: | ||||
| 		partial_file.seek(0,0) | ||||
|  | ||||
| 	pointers = [0]*num_indices | ||||
|  | ||||
| 	while(True): | ||||
|  | ||||
| 		#Get all values from all indices to find min | ||||
| 		value = None | ||||
| 		values = list() | ||||
| 		for i in range(num_indices): | ||||
| 			if pointers[i] < parital_index_indices[i]['length']: | ||||
| 				values.append(parital_index_indices[i]['index'][pointers[i]][0]) | ||||
| 			 | ||||
| 		if(len(values) == 0): | ||||
| 			break | ||||
| 		value = min(values) | ||||
|  | ||||
| 		#Get data from the min value of all indices if exists then save to mergedIndex | ||||
| 		if value == None: | ||||
| 			print("I have crashed some how by not getting min value") | ||||
| 			break | ||||
|  | ||||
| 		node = Node() | ||||
| 		node.index_value = value | ||||
| 		for i in range(num_indices): | ||||
| 			if pointers[i] < parital_index_indices[i]['length'] and parital_index_indices[i]['index'][pointers[i]][0] == value: | ||||
| 				to_seek = parital_index_indices[i]['index'][pointers[i]][1] | ||||
| 				partial_files[i].seek(to_seek,0) | ||||
| 				json_value = partial_files[i].readline() | ||||
| 				temp_node = json.loads(json_value) | ||||
| 				node.postings = node.postings + temp_node['postings'] | ||||
| 				pointers[i] = pointers[i] + 1 | ||||
| 		 | ||||
| 		node.postings.sort(key=lambda y:y['doc_id']) | ||||
| 		full_index.index.append((value,merged_index.tell())) | ||||
| 		full_index.length = full_index.length + 1 | ||||
| 		jsonStr = json.dumps(node,default=lambda o: o.__dict__,sort_keys=False) | ||||
| 		merged_index.write(jsonStr + '\n') | ||||
|  | ||||
| 	full_index.index.sort(key=lambda y:y[0]) | ||||
| 	jsonStr =json.dumps(full_index, default=lambda o: o.__dict__,sort_keys=False) | ||||
| 	with open("merged_index.index" ,'w') as f: | ||||
| 		f.write(jsonStr) | ||||
							
								
								
									
										155
									
								
								worker.py
									
									
									
									
									
								
							
							
						
						
									
										155
									
								
								worker.py
									
									
									
									
									
								
							| @@ -1,64 +1,137 @@ | ||||
| from threading import Thread | ||||
| import json | ||||
| import os | ||||
| import shelve | ||||
| from bs4 import BeautifulSoup | ||||
| from time import perf_counter | ||||
| import time | ||||
| import pickle | ||||
|  | ||||
| from bs4 import BeautifulSoup | ||||
| import re | ||||
|  | ||||
|  | ||||
| #Data process | ||||
| from nltk.tokenize import word_tokenize | ||||
| from nltk.stem import PorterStemmer | ||||
| from sklearn.feature_extraction.text import TfidfVectorizer | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| from collections import Counter | ||||
|  | ||||
| from posting import Posting | ||||
|  | ||||
| import math | ||||
|  | ||||
| import sys | ||||
|  | ||||
| class Node(): | ||||
| 	index_value = '' | ||||
| 	postings = list() | ||||
|  | ||||
| class Index(): | ||||
| 	length = 0 | ||||
| 	index = list() | ||||
|  | ||||
| class Worker(Thread): | ||||
| 	def __init__(self,indexer,target): | ||||
| 		self.file = target | ||||
| 	def __init__(self,worker_id,indexer): | ||||
| 		self.indexer = indexer | ||||
| 		self.stemmer = PorterStemmer() | ||||
| 		self.worker_id = worker_id | ||||
| 		self.num_partial = 0 | ||||
| 		self.index = dict() | ||||
| 		super().__init__(daemon=True) | ||||
|  | ||||
| 	def dump(self): | ||||
| 		part_index = Index() | ||||
| 		part_index.length = 0 | ||||
| 		part_index.index = list() | ||||
|  | ||||
| 		cur_partial_index_str = "temp/" + str(self.worker_id) + "_" + str(self.num_partial) + '.partial' | ||||
| 		cur_partial_index_index_str = "temp/" +  str(self.worker_id) + "_" + str(self.num_partial) + '.index' | ||||
|  | ||||
|  | ||||
| 		cur_partial_index = open(cur_partial_index_str,'w') | ||||
| 		cur_partial_index_index = open(cur_partial_index_index_str,'w') | ||||
|  | ||||
| 		for key in self.index: | ||||
| 			node = Node() | ||||
| 			node.index_value = key | ||||
| 			node.postings = self.index[key] | ||||
|  | ||||
| 			jsonStr = json.dumps(node, default=lambda o: o.__dict__,sort_keys=False) | ||||
|  | ||||
| 			part_index.index.append((node.index_value,cur_partial_index.tell())) | ||||
| 			cur_partial_index.write(jsonStr + '\n') | ||||
| 			part_index.length = part_index.length + 1 | ||||
|  | ||||
| 		part_index.index.sort(key=lambda y:y[0]) | ||||
| 		jsonStr =json.dumps(part_index, default=lambda o: o.__dict__,sort_keys=False) | ||||
| 		cur_partial_index_index.write(jsonStr) | ||||
|  | ||||
| 		self.indexer.add_partial_index(str(self.worker_id) + "_" + str(self.num_partial)) | ||||
| 		self.num_partial = self.num_partial + 1 | ||||
| 		self.index.clear() | ||||
|  | ||||
|  | ||||
| 	def run(self): | ||||
| 		print("Target: " + str(self.file)) | ||||
| 		ticker = perf_counter() | ||||
| 		file_load = open(self.file) | ||||
| 		data = json.load(file_load) | ||||
| 		soup = BeautifulSoup(data["content"],features="lxml") | ||||
| 		# Gets a cleaner version text comparative to soup.get_text() | ||||
| 		tic = perf_counter() | ||||
| 		clean_text = ' '.join(soup.stripped_strings) | ||||
| 		# Looks for large white space, tabbed space, and other forms of spacing and removes it | ||||
| 		# Regex expression matches for space characters excluding a single space or words | ||||
| 		clean_text = re.sub(r'\s[^ \w]', '', clean_text) | ||||
| 		# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended | ||||
| 		clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)]) | ||||
| 		# Stems tokenized text | ||||
| 		clean_text = " ".join([self.indexer.stemmer.stem(i) for i in clean_text.split()]) | ||||
| 		# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists | ||||
| 		x = [clean_text] | ||||
| 		toc = perf_counter() | ||||
| 		print("Took " + str(toc - tic) + " seconds to create clean text") | ||||
| 		# ngrams is a dict | ||||
| 		# structure looks like {ngram : {0: tf-idf score}} | ||||
| 		ngrams = self.indexer.get_tf_idf(x) | ||||
| 		if ngrams != -1: | ||||
| 			tic = perf_counter() | ||||
| 			for ngram, posting in ngrams.items(): | ||||
| 				self.indexer.save_index(ngram, posting) | ||||
| 			toc = perf_counter() | ||||
| 			print("Took " + str(toc - tic) + " seconds to save ngram") | ||||
| 		while True: | ||||
| 			target = self.indexer.get_next_file() | ||||
| 			if not target: | ||||
| 				self.dump() | ||||
| 				print("Worker " + str(self.worker_id) + " died") | ||||
| 				break | ||||
| 			file_load = open(target) | ||||
| 			data = json.load(file_load) | ||||
| 			soup = BeautifulSoup(data["content"],features="lxml") | ||||
| 			doc_id = target[target.rfind('/')+1:-5] | ||||
| 			url = data['url'] | ||||
| 			print("Worker " + str(self.worker_id) + " working on " + url) | ||||
| 			important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []} | ||||
| 			for key_words in important.keys(): | ||||
| 				for i in soup.findAll(key_words): | ||||
| 					for word in word_tokenize(i.text): | ||||
| 						important[key_words].append(self.stemmer.stem(word)) | ||||
|  | ||||
| 			# Gets a cleaner version text comparative to soup.get_text() | ||||
| 			clean_text = ' '.join(soup.stripped_strings) | ||||
| 			# Looks for large white space, tabbed space, and other forms of spacing and removes it | ||||
| 			# Regex expression matches for space characters excluding a single space or words | ||||
| 			clean_text = re.sub(r'\s[^ \w]', '', clean_text) | ||||
| 			# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended | ||||
| 			clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)]) | ||||
| 			# Stems tokenized text | ||||
| 			clean_text = " ".join([self.stemmer.stem(i) for i in clean_text.split()]) | ||||
| 			# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists | ||||
|  | ||||
| 			tokens = word_tokenize(clean_text) | ||||
|  | ||||
| 			#counter(count,positionals) | ||||
|  | ||||
| 			counter = dict() | ||||
| 			#We calculating tf_raw, and positionals here | ||||
| 			for i in range(len(tokens)): | ||||
| 				word = tokens[i] | ||||
| 				if word in counter: | ||||
| 					counter[word][0] = counter[word][0] + 1 | ||||
| 					counter[word][1].append(i) | ||||
| 				else: | ||||
| 					counter[word] = [1,list()] | ||||
| 					counter[word][1].append(i) | ||||
|  | ||||
| 			doc_length = len(tokens) | ||||
| 			total = 0 | ||||
| 			for index in counter: | ||||
| 				tf = counter[index][0]/doc_length | ||||
| 				log_tf = 1 + math.log(tf) | ||||
| 				total = total + log_tf * log_tf | ||||
| 				if index in self.index: | ||||
| 					postings = self.index[index] | ||||
| 					postings.append(Posting(doc_id,url,tf,0,counter[index][1])) | ||||
| 				else: | ||||
| 					self.index[index] = list() | ||||
| 					self.index[index].append(Posting(doc_id,url,tf,0,counter[index][1])) | ||||
| 					self.index[index].sort(key=lambda y:y.doc_id) | ||||
|  | ||||
| 			self.indexer.weight[doc_id] = math.sqrt(total) | ||||
|  | ||||
| 			#10 Megabytes index (in Ram approx) | ||||
| 			if sys.getsizeof(self.index) > 1000000: | ||||
| 				self.dump() | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 			tocker = perf_counter() | ||||
| 			print("Took " + str(tocker - ticker) + " seconds to work") | ||||
| 			 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 unknown
					unknown