Same as previous push
This commit is contained in:
parent
60f6eb0df0
commit
e325b9d810
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,3 +1,5 @@
|
||||
/data/
|
||||
*.shelve
|
||||
/__pycache__/
|
||||
/test/
|
||||
merged*
|
||||
|
1
docs.weight
Normal file
1
docs.weight
Normal file
File diff suppressed because one or more lines are too long
379
indexer.py
379
indexer.py
@ -10,7 +10,6 @@
|
||||
#Posting ---> Source of file, tf-idf score. #for now we will only use these two, as we get more complex posting will be change accordingly
|
||||
|
||||
#Data input
|
||||
import math
|
||||
import json
|
||||
import os
|
||||
import shelve
|
||||
@ -18,7 +17,8 @@ from bs4 import BeautifulSoup
|
||||
from time import perf_counter
|
||||
import time
|
||||
import threading
|
||||
import pickle
|
||||
from threading import Lock
|
||||
import math
|
||||
|
||||
|
||||
#Data process
|
||||
@ -34,235 +34,196 @@ import re
|
||||
from posting import Posting
|
||||
from worker import Worker
|
||||
|
||||
class Node():
|
||||
index_value = ''
|
||||
postings = list()
|
||||
|
||||
class Index():
|
||||
length = 0
|
||||
index = list()
|
||||
|
||||
class Indexer():
|
||||
def __init__(self,restart,trimming):
|
||||
def __init__(self,list_partials,weight,data_paths,worker_factory=Worker):
|
||||
#Config stuffs
|
||||
self.path = "D:/Visual Studio Workspace/CS121/assignment3/data/DEV/"
|
||||
self.restart = restart
|
||||
self.trimming = trimming
|
||||
self.path = "data/DEV"
|
||||
self.num_doc = 0
|
||||
self.list_partials = list_partials
|
||||
self.weight = weight
|
||||
self.data_paths = data_paths
|
||||
self.stemmer = PorterStemmer()
|
||||
self.id = list()
|
||||
# list that contains the denominator for normalization before taking the square root of it. square root will be taken during query time
|
||||
self.normalize = list()
|
||||
self.data_paths_lock = Lock()
|
||||
self.list_partials_lock = Lock()
|
||||
|
||||
#Shelves for index
|
||||
#https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html
|
||||
#https://www.irishtimes.com/news/science/how-many-numbers-begin-with-a-1-more-than-30-per-cent-1.4162466
|
||||
#According to this will be how we split things
|
||||
#Save #1 = ABCD + (1) ~ 18.3% of words
|
||||
#Save #2 = EFGHIJK + (2-3)~ 27.1% of words
|
||||
#Save #3 = LMNOPQ + (4-7) ~ 25.4% of words
|
||||
#Save #4 = RSTUVWXYZ + (8-9)~ 29.2% of words
|
||||
#Save #5 = Special characters
|
||||
if os.path.exists("save_1.shelve") and restart:
|
||||
os.remove("save_1.shelve")
|
||||
if os.path.exists("save_2.shelve") and restart:
|
||||
os.remove("save_2.shelve")
|
||||
if os.path.exists("save_3.shelve") and restart:
|
||||
os.remove("save_3.shelve")
|
||||
if os.path.exists("save_4.shelve") and restart:
|
||||
os.remove("save_4.shelve")
|
||||
if os.path.exists("save_5.shelve") and restart:
|
||||
os.remove("save_5.shelve")
|
||||
self.workers = list()
|
||||
self.worker_factory = worker_factory
|
||||
|
||||
|
||||
self.save_1 = shelve.open("save_1.shelve")
|
||||
self.save_1_lock = threading.Lock()
|
||||
self.save_2 = shelve.open("save_2.shelve")
|
||||
self.save_2_lock = threading.Lock()
|
||||
self.save_3 = shelve.open("save_3.shelve")
|
||||
self.save_3_lock = threading.Lock()
|
||||
self.save_4 = shelve.open("save_4.shelve")
|
||||
self.save_4_lock = threading.Lock()
|
||||
self.save_5 = shelve.open("save_5.shelve")
|
||||
self.save_5_lock = threading.Lock()
|
||||
def start_async(self):
|
||||
self.workers = [
|
||||
self.worker_factory(worker_id,self)
|
||||
for worker_id in range(8)]
|
||||
for worker in self.workers:
|
||||
worker.start()
|
||||
|
||||
print(len(list(self.save_1.keys())))
|
||||
print(len(list(self.save_2.keys())))
|
||||
print(len(list(self.save_3.keys())))
|
||||
print(len(list(self.save_4.keys())))
|
||||
print(len(list(self.save_5.keys())))
|
||||
def start(self):
|
||||
self.start_async()
|
||||
self.join()
|
||||
|
||||
def get_url_id(self, url):
|
||||
return self.id.index(url)
|
||||
|
||||
def save_index(self,word,posting):
|
||||
cur_save = self.get_save_file(word)
|
||||
lock = self.get_save_lock(word)
|
||||
lock.acquire()
|
||||
shelve_list = list()
|
||||
try:
|
||||
shelve_list = cur_save[word]
|
||||
shelve_list.append(posting)
|
||||
tic = perf_counter()
|
||||
# Sort by url id to help with query search
|
||||
shelve_list.sort(key=lambda x: x.url)
|
||||
# shelve_list.sort(key=lambda x: x.tf_idf, reverse = True)
|
||||
toc = perf_counter()
|
||||
if toc - tic > 1 :
|
||||
print("Took " + str(toc - tic) + "seconds to sort shelve list !")
|
||||
cur_save.sync()
|
||||
lock.release()
|
||||
except:
|
||||
shelve_list.append(posting)
|
||||
cur_save[word] = shelve_list
|
||||
cur_save.sync()
|
||||
lock.release()
|
||||
|
||||
def get_save_file(self,word):
|
||||
#return the correct save depending on the starting letter of word
|
||||
word_lower = word.lower()
|
||||
|
||||
if re.match(r"^[a-d0-1].*",word_lower):
|
||||
return self.save_1
|
||||
elif re.match(r"^[e-k2-3].*",word_lower):
|
||||
return self.save_2
|
||||
elif re.match(r"^[l-q4-7].*",word_lower):
|
||||
return self.save_3
|
||||
elif re.match(r"^[r-z8-9].*",word_lower):
|
||||
return self.save_4
|
||||
else:
|
||||
print(word)
|
||||
print("You have somehow went beyond the magic")
|
||||
return self.save_5
|
||||
|
||||
def get_save_lock(self,word):
|
||||
word_lower = word.lower()
|
||||
if re.match(r"^[a-d0-1].*",word_lower):
|
||||
return self.save_1_lock
|
||||
elif re.match(r"^[e-k2-3].*",word_lower):
|
||||
return self.save_2_lock
|
||||
elif re.match(r"^[l-q4-7].*",word_lower):
|
||||
return self.save_3_lock
|
||||
elif re.match(r"^[r-z8-9].*",word_lower):
|
||||
return self.save_4_lock
|
||||
else:
|
||||
print(word)
|
||||
print("You have somehow went beyond the magic")
|
||||
return self.save_5_lock.acquire()
|
||||
# I have a test file (mytest.py) with pandas but couldn't figure out how to grab just a single cell.
|
||||
# so I came up with this, if anyone knows how to get a single cell and can explain it to
|
||||
# me I would love to know, as I think that method might be quicker, maybe, idk it like
|
||||
# 4am
|
||||
# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen
|
||||
|
||||
# removed parameter "word" since it wasn't used
|
||||
# TODO: Add important words scaling
|
||||
def get_tf_idf(self, words):
|
||||
# words = [whole text] one element list
|
||||
# return the score
|
||||
try:
|
||||
tfidf = TfidfVectorizer(ngram_range=(1,1)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
|
||||
tfidf_matrix = tfidf.fit_transform(words) # fit trains the model, transform creates matrix
|
||||
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
|
||||
#return(df.iloc[0][''.join(word)]) #used for finding single word in dataset
|
||||
data = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
|
||||
return data # returns the dict of words/n-grams with tf-idf
|
||||
#print(df) # debugging
|
||||
except:
|
||||
print("Error in tf_idf!")
|
||||
return -1
|
||||
|
||||
def tf(self, text, url):
|
||||
# tf
|
||||
tokens = {}
|
||||
split = text.split(" ")
|
||||
# loop using index to keep track of position
|
||||
for i in range(len(split)):
|
||||
if split[i] not in tokens:
|
||||
tokens[split[i]] = Posting(self.get_url_id(url), 1, i)
|
||||
else:
|
||||
tokens[split[i]].rtf += 1
|
||||
tokens[split[i]].tf = (1 + math.log(tokens[split[i]].rtf))
|
||||
tokens[split[i]].positions.append(i)
|
||||
return tokens
|
||||
|
||||
# Does the idf part of the tfidf
|
||||
def tfidf(self, current_save):
|
||||
for token, postings in current_save.items():
|
||||
for p in postings:
|
||||
p.tfidf = p.tf * math.log(len(self.id)/len(postings))
|
||||
self.normalize[p.url] += p.tfidf**2
|
||||
def join(self):
|
||||
for worker in self.workers:
|
||||
worker.join()
|
||||
|
||||
|
||||
def get_data(self):
|
||||
def get_postings(self,index):
|
||||
merged_index_index = open("merged_index.index" ,'r')
|
||||
merged_index = open("merged_index.full",'r')
|
||||
merged_index_index.seek(0,0)
|
||||
json_value = merged_index_index.readline()
|
||||
data = json.loads(json_value)
|
||||
index_index = dict(data['index'])
|
||||
to_seek = index_index[index]
|
||||
merged_index.seek(to_seek,0)
|
||||
json_value = merged_index.readline()
|
||||
data = json.loads(json_value)
|
||||
return data['postings']
|
||||
|
||||
num_threads = 8
|
||||
threads = list()
|
||||
def set_weight(self):
|
||||
weight_file = open('docs.weight','w')
|
||||
jsonStr =json.dumps(self.weight, default=lambda o: o.__dict__,sort_keys=False)
|
||||
weight_file.write(jsonStr)
|
||||
weight_file.close()
|
||||
|
||||
def get_weight(self,doc_id):
|
||||
weight = open('docs.weight','r')
|
||||
weight.seek(0,0)
|
||||
json_value = weight.readline()
|
||||
data = json.loads(json_value)
|
||||
return data[doc_id]
|
||||
|
||||
def get_data_path(self):
|
||||
for directory in os.listdir(self.path):
|
||||
for file in os.listdir(self.path + "/" + directory + "/"):
|
||||
#Actual files here
|
||||
#JSON["url"] = url of crawled page, ignore fragments
|
||||
#JSON["content"] = actual HTML
|
||||
#JSON["encoding"] = ENCODING
|
||||
index = 0
|
||||
while True:
|
||||
file_path = self.path + "" + directory + "/"+file
|
||||
# Add url to id here so that there isn't any problems when worker is multi-threaded
|
||||
self.data_paths.append("data/DEV/" + directory + "/"+file)
|
||||
self.num_doc = len(self.data_paths)
|
||||
|
||||
tic = perf_counter()
|
||||
load = open(file_path)
|
||||
data = json.load(load)
|
||||
if data["url"] not in self.id:
|
||||
self.id.append(data["url"])
|
||||
toc = perf_counter()
|
||||
print("Took " + str(toc - tic) + " seconds to save url to self.id")
|
||||
|
||||
if len(threads) < num_threads:
|
||||
thread = Worker(self,file_path)
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
break
|
||||
else:
|
||||
if not threads[index].is_alive():
|
||||
threads[index] = Worker(self,file_path)
|
||||
threads[index].start()
|
||||
break
|
||||
else:
|
||||
index = index + 1
|
||||
if(index >= num_threads):
|
||||
index = 0
|
||||
time.sleep(.1)
|
||||
# Make a list the size of the corpus to keep track of document scores
|
||||
self.normalize = [0] * len(self.id)
|
||||
def get_next_file(self):
|
||||
self.data_paths_lock.acquire()
|
||||
try:
|
||||
holder = self.data_paths.pop()
|
||||
self.data_paths_lock.release()
|
||||
return holder
|
||||
except IndexError:
|
||||
self.data_paths_lock.release()
|
||||
return None
|
||||
|
||||
def add_partial_index(self,partial_index):
|
||||
self.list_partials_lock.acquire()
|
||||
self.list_partials.append(partial_index)
|
||||
self.list_partials_lock.release()
|
||||
|
||||
# These last few function calls calculates idf and finalizes tf-idf weighting for each index
|
||||
self.tfidf(self.save_1)
|
||||
self.tfidf(self.save_2)
|
||||
self.tfidf(self.save_3)
|
||||
self.tfidf(self.save_4)
|
||||
self.tfidf(self.save_5)
|
||||
|
||||
# Creates a pickle file that is a list of urls where the index of the url is the id that the posting refers to.
|
||||
p = os.path.dirname(os.path.abspath(__file__))
|
||||
my_filename = os.path.join(p, "urlID.pkl")
|
||||
if os.path.exists(my_filename):
|
||||
os.remove(my_filename)
|
||||
# Creates file and closes it
|
||||
f = open(my_filename, "wb")
|
||||
pickle.dump(self.id, f)
|
||||
f.close()
|
||||
|
||||
# Creates a pickle file that will contain the denominator (before the square root) for normalizing wt
|
||||
p = os.path.dirname(os.path.abspath(__file__))
|
||||
my_filename = os.path.join(p, "normalize.pkl")
|
||||
if os.path.exists(my_filename):
|
||||
os.remove(my_filename)
|
||||
# Creates file and closes it
|
||||
f = open(my_filename, "wb")
|
||||
pickle.dump(self.normalize, f)
|
||||
f.close()
|
||||
#Found 55770 documents
|
||||
#
|
||||
#getting important tokens
|
||||
|
||||
#getting important tokens
|
||||
def merge(self):
|
||||
partial_files = list()
|
||||
partial_index_files = list()
|
||||
parital_index_indices = list()
|
||||
|
||||
num_indices = len(self.list_partials)
|
||||
|
||||
#Full Index.Index and Length
|
||||
full_index = Index()
|
||||
full_index.index = list()
|
||||
full_index.length = 0
|
||||
|
||||
for partial_index in self.list_partials:
|
||||
file = open("temp/" + partial_index+'.partial','r')
|
||||
partial_files.append(file)
|
||||
index = open("temp/" + partial_index+'.index','r')
|
||||
partial_index_files.append(index)
|
||||
|
||||
for partial_index_file in partial_index_files:
|
||||
partial_index_file.seek(0,0)
|
||||
parital_index_indices.append(json.loads(partial_index_file.readline()))
|
||||
|
||||
#Start all indexes at 0
|
||||
for partial_file in partial_files:
|
||||
partial_file.seek(0,0)
|
||||
|
||||
pointers = [0]*num_indices
|
||||
merged_index = open("merged_index.full",'w')
|
||||
merged_index_index = open("merged_index.index" ,'w')
|
||||
|
||||
while(True):
|
||||
|
||||
#Get all values from all indices to find min
|
||||
value = None
|
||||
values = list()
|
||||
for i in range(num_indices):
|
||||
if pointers[i] < parital_index_indices[i]['length']:
|
||||
values.append(parital_index_indices[i]['index'][pointers[i]][0])
|
||||
|
||||
|
||||
if(len(values) == 0):
|
||||
break
|
||||
value = min(values)
|
||||
|
||||
#Get data from the min value of all indices if exists then save to mergedIndex
|
||||
if value == None:
|
||||
print("I have crashed some how by not getting min value")
|
||||
break
|
||||
|
||||
node = Node()
|
||||
node.index_value = value
|
||||
for i in range(num_indices):
|
||||
if pointers[i] < parital_index_indices[i]['length'] and parital_index_indices[i]['index'][pointers[i]][0] == value:
|
||||
to_seek = parital_index_indices[i]['index'][pointers[i]][1]
|
||||
partial_files[i].seek(to_seek,0)
|
||||
json_value = partial_files[i].readline()
|
||||
temp_node = json.loads(json_value)
|
||||
node.postings = node.postings + temp_node['postings']
|
||||
pointers[i] = pointers[i] + 1
|
||||
#Change postings here with tf*idf idf = log (n/df(t))
|
||||
node.postings.sort(key=lambda y:y['doc_id'])
|
||||
for posting in node.postings:
|
||||
posting['tf_idf'] = posting['tf_raw']*math.log(self.num_doc/len(node.postings))
|
||||
full_index.index.append((value,merged_index.tell()))
|
||||
full_index.length = full_index.length + 1
|
||||
jsonStr = json.dumps(node,default=lambda o: o.__dict__,sort_keys=False)
|
||||
merged_index.write(jsonStr + '\n')
|
||||
|
||||
full_index.index.sort(key=lambda y:y[0])
|
||||
jsonStr =json.dumps(full_index, default=lambda o: o.__dict__,sort_keys=False)
|
||||
merged_index_index.write(jsonStr)
|
||||
|
||||
for partial_index in self.list_partials:
|
||||
os.remove("temp/" + partial_index+'.partial')
|
||||
os.remove("temp/" + partial_index+'.index')
|
||||
|
||||
merged_index_index.close()
|
||||
merged_index.close()
|
||||
|
||||
|
||||
def main():
|
||||
indexer = Indexer(True,0)
|
||||
indexer.get_data()
|
||||
indexer = Indexer(list(),dict(),list())
|
||||
indexer.get_data_path()
|
||||
print("We have " + str(len(indexer.data_paths)) + " documents to go through !" )
|
||||
indexer.start()
|
||||
indexer.merge()
|
||||
print("Finished merging into 1 big happy family")
|
||||
indexer.set_weight()
|
||||
|
||||
tic = time.perf_counter()
|
||||
indexer.get_postings('artifici')
|
||||
toc = time.perf_counter()
|
||||
print(f"Took {toc - tic:0.4f} seconds to get postings for artifici")
|
||||
tic = time.perf_counter()
|
||||
indexer.get_weight('00ba3af6a00b7cfb4928e5d234342c5dc46b4e31714d4a8f315a2dd4d8e49860')
|
||||
print(f"Took {toc - tic:0.4f} seconds to get weight for some random page ")
|
||||
toc = time.perf_counter()
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
10
mytest.py
10
mytest.py
@ -4,6 +4,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
#tf_idf
|
||||
#words = whole text
|
||||
#word the word we finding the score for
|
||||
@ -19,13 +20,12 @@ words = ['this is the first document '
|
||||
doc1 = ["I can't fucking take it any more. Among Us has singlehandedly ruined my life. The other day my teacher was teaching us Greek Mythology and he mentioned a pegasus and I immediately thought 'Pegasus? more like Mega Sus!!!!' and I've never wanted to kms more. I can't look at a vent without breaking down and fucking crying. I can't eat pasta without thinking 'IMPASTA??? THATS PRETTY SUS!!!!' Skit 4 by Kanye West. The lyrics ruined me. A Mongoose, or the 25th island of greece. The scientific name for pig. I can't fucking take it anymore. Please fucking end my suffering."]
|
||||
doc2 = ["Anyways, um... I bought a whole bunch of shungite rocks, do you know what shungite is? Anybody know what shungite is? No, not Suge Knight, I think he's locked up in prison. I'm talkin' shungite. Anyways, it's a two billion year-old like, rock stone that protects against frequencies and unwanted frequencies that may be traveling in the air. That's my story, I bought a whole bunch of stuff. Put 'em around the la casa. Little pyramids, stuff like that."]
|
||||
word = 'life'
|
||||
|
||||
try:
|
||||
tfidf = TfidfVectorizer()
|
||||
tfidf_matrix = tfidf.fit_transform(doc1)
|
||||
tfidf = TfidfVectorizer(ngram_range=(3,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
|
||||
tfidf_matrix = tfidf.fit_transform(words)
|
||||
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out())
|
||||
print(df.iloc[0][''.join(word)])
|
||||
#print(df)
|
||||
#print(df.iloc[0][''.join(word)])
|
||||
data = df.to_dict()
|
||||
except KeyError: # word does not exist
|
||||
print(-1)
|
||||
|
||||
|
18
posting.py
18
posting.py
@ -1,9 +1,17 @@
|
||||
#Posting class for indexer, will probably be more complex as we keep adding crap to it
|
||||
|
||||
class Posting():
|
||||
def __init__(self, url, rtf, position):
|
||||
def __init__(self,doc_id,url,tf_raw,tf_idf,positionals):
|
||||
self.doc_id = doc_id
|
||||
self.url = url
|
||||
self.rtf = rtf
|
||||
self.tf = 0
|
||||
self.tfidf = 0
|
||||
self.positions = [position]
|
||||
self.tf_raw = tf_raw
|
||||
self.tf_idf = tf_idf
|
||||
self.positionals = positionals
|
||||
def __repr__(self):
|
||||
return "Doc_id:" + str(self.doc_id) + " URL:" + self.url + " tf_raw:" + str(self.tf_raw) + " tf_idf:" + str(self.tf_idf) + " positionals:" + str(self.positionals)
|
||||
def __str__(self):
|
||||
return "Doc_id:" + str(self.doc_id) + " URL:" + self.url + " tf_raw:" + str(self.tf_raw) + " tf_idf:" + str(self.tf_idf) + " positionals:" + str(self.positionals)
|
||||
|
||||
def comparator(self):
|
||||
#Some custom comparator for sorting postings later
|
||||
pass
|
18
stemmer.py
18
stemmer.py
@ -1,18 +0,0 @@
|
||||
#Multiple implementation of stemming here please
|
||||
class Stemmer():
|
||||
|
||||
def __init__(self,mode, data):
|
||||
#Different type of stemmer = different modes
|
||||
self.mode = mode
|
||||
self.data = data
|
||||
|
||||
def stem(self):
|
||||
#Do stuff here
|
||||
if(self.mode == 0):
|
||||
#Do stemmer 1
|
||||
return #stemmed data
|
||||
#....
|
||||
|
||||
def #name of stemmer 1
|
||||
|
||||
def #name of stemmer 2
|
@ -1,2 +0,0 @@
|
||||
|
||||
for postings in l_posting:
|
26
test.py
26
test.py
@ -1,17 +1,13 @@
|
||||
import re
|
||||
from threading import Thread
|
||||
import json
|
||||
import os
|
||||
import shelve
|
||||
import sys
|
||||
from bs4 import BeautifulSoup
|
||||
from time import perf_counter
|
||||
from nltk.stem import PorterStemmer
|
||||
import nltk
|
||||
import time
|
||||
from posting import Posting
|
||||
|
||||
for i in range(99):
|
||||
word_lower = chr(i % 26 + 97) + chr(i % 26 + 97 + 1)
|
||||
print(word_lower)
|
||||
if re.match(r"^[a-d1-1].*",word_lower):
|
||||
print("SAVE 1")
|
||||
elif re.match(r"^[e-k2-3].*",word_lower):
|
||||
print("SAVE 2")
|
||||
elif re.match(r"^[l-q4-7].*",word_lower):
|
||||
print("SAVE 3")
|
||||
elif re.match(r"^[r-z8-9].*",word_lower):
|
||||
print("SAVE 4")
|
||||
|
||||
path = "data/DEV/"
|
||||
print(os.listdir(path))
|
||||
import re
|
||||
|
28
test1.py
28
test1.py
@ -1,28 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
import shelve
|
||||
from bs4 import BeautifulSoup
|
||||
from time import perf_counter
|
||||
import time
|
||||
import threading
|
||||
import pickle
|
||||
|
||||
|
||||
#Data process
|
||||
from nltk.tokenize import word_tokenize
|
||||
from nltk.stem import PorterStemmer
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from porter2stemmer import Porter2Stemmer
|
||||
|
||||
import re
|
||||
|
||||
save_1 = shelve.open("save_1.shelve")
|
||||
save_2 = shelve.open("save_2.shelve")
|
||||
save_3 = shelve.open("save_3.shelve")
|
||||
save_4 = shelve.open("save_4.shelve")
|
||||
save_5 = shelve.open("save_5.shelve")
|
||||
|
||||
key = list(save_1.keys())
|
||||
print(key)
|
116
test_merge.py
Normal file
116
test_merge.py
Normal file
@ -0,0 +1,116 @@
|
||||
import json
|
||||
from posting import Posting
|
||||
import math
|
||||
import sys
|
||||
import random
|
||||
from nltk.corpus import words
|
||||
random_list = [1,2,3,4,5,6,7,8,9,10]
|
||||
|
||||
|
||||
test_data = words.words()
|
||||
random.shuffle(test_data)
|
||||
|
||||
|
||||
def random_posting(id):
|
||||
return Posting(id,random.choice(random_list),random.choice(random_list),[random.choice(random_list),random.choice(random_list),random.choice(random_list),random.choice(random_list),
|
||||
random.choice(random_list),random.choice(random_list),random.choice(random_list),random.choice(random_list)])
|
||||
|
||||
class Node():
|
||||
index_value = 'Something'
|
||||
postings = list()
|
||||
|
||||
class Index():
|
||||
length = 0
|
||||
index = list()
|
||||
|
||||
def random_partial_index(name):
|
||||
part_index = Index()
|
||||
part_index.index = list()
|
||||
part_index.length = 0
|
||||
with open(name +'.partial', 'w') as f:
|
||||
for i in range(1000):
|
||||
|
||||
node1 = Node()
|
||||
node1.index_value = random.choice(test_data).lower()
|
||||
node1.postings = list()
|
||||
for i in range(10):
|
||||
node1.postings.append(random_posting(i))
|
||||
|
||||
jsonStr = json.dumps(node1, default=lambda o: o.__dict__,sort_keys=False)
|
||||
|
||||
part_index.index.append((node1.index_value,f.tell()))
|
||||
f.write(jsonStr + '\n')
|
||||
part_index.length = part_index.length + 1
|
||||
|
||||
part_index.index.sort(key=lambda y:y[0])
|
||||
jsonStr =json.dumps(part_index, default=lambda o: o.__dict__,sort_keys=False)
|
||||
with open(name + '.index','w') as f:
|
||||
f.write(jsonStr)
|
||||
|
||||
def merge(partial_indices):
|
||||
partial_files = list()
|
||||
partial_index_files = list()
|
||||
parital_index_indices = list()
|
||||
merged_index = open("merged_index.full",'w')
|
||||
num_indices = len(partial_indices)
|
||||
|
||||
#Full Index.Index and Length
|
||||
full_index = Index()
|
||||
full_index.index = list()
|
||||
full_index.length = 0
|
||||
|
||||
for partial_index in partial_indices:
|
||||
file = open(partial_index+'.partial','r')
|
||||
partial_files.append(file)
|
||||
index = open(partial_index+'.index','r')
|
||||
partial_index_files.append(index)
|
||||
|
||||
for partial_index_file in partial_index_files:
|
||||
partial_index_file.seek(0,0)
|
||||
parital_index_indices.append(json.loads(partial_index_file.readline()))
|
||||
|
||||
#Start all indexes at 0
|
||||
for partial_file in partial_files:
|
||||
partial_file.seek(0,0)
|
||||
|
||||
pointers = [0]*num_indices
|
||||
|
||||
while(True):
|
||||
|
||||
#Get all values from all indices to find min
|
||||
value = None
|
||||
values = list()
|
||||
for i in range(num_indices):
|
||||
if pointers[i] < parital_index_indices[i]['length']:
|
||||
values.append(parital_index_indices[i]['index'][pointers[i]][0])
|
||||
|
||||
if(len(values) == 0):
|
||||
break
|
||||
value = min(values)
|
||||
|
||||
#Get data from the min value of all indices if exists then save to mergedIndex
|
||||
if value == None:
|
||||
print("I have crashed some how by not getting min value")
|
||||
break
|
||||
|
||||
node = Node()
|
||||
node.index_value = value
|
||||
for i in range(num_indices):
|
||||
if pointers[i] < parital_index_indices[i]['length'] and parital_index_indices[i]['index'][pointers[i]][0] == value:
|
||||
to_seek = parital_index_indices[i]['index'][pointers[i]][1]
|
||||
partial_files[i].seek(to_seek,0)
|
||||
json_value = partial_files[i].readline()
|
||||
temp_node = json.loads(json_value)
|
||||
node.postings = node.postings + temp_node['postings']
|
||||
pointers[i] = pointers[i] + 1
|
||||
|
||||
node.postings.sort(key=lambda y:y['doc_id'])
|
||||
full_index.index.append((value,merged_index.tell()))
|
||||
full_index.length = full_index.length + 1
|
||||
jsonStr = json.dumps(node,default=lambda o: o.__dict__,sort_keys=False)
|
||||
merged_index.write(jsonStr + '\n')
|
||||
|
||||
full_index.index.sort(key=lambda y:y[0])
|
||||
jsonStr =json.dumps(full_index, default=lambda o: o.__dict__,sort_keys=False)
|
||||
with open("merged_index.index" ,'w') as f:
|
||||
f.write(jsonStr)
|
159
worker.py
159
worker.py
@ -1,64 +1,137 @@
|
||||
from threading import Thread
|
||||
import json
|
||||
import os
|
||||
import shelve
|
||||
from bs4 import BeautifulSoup
|
||||
from time import perf_counter
|
||||
import time
|
||||
import pickle
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
import re
|
||||
|
||||
|
||||
#Data process
|
||||
from nltk.tokenize import word_tokenize
|
||||
from nltk.stem import PorterStemmer
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from collections import Counter
|
||||
|
||||
from posting import Posting
|
||||
|
||||
import math
|
||||
|
||||
import sys
|
||||
|
||||
class Node():
|
||||
index_value = ''
|
||||
postings = list()
|
||||
|
||||
class Index():
|
||||
length = 0
|
||||
index = list()
|
||||
|
||||
class Worker(Thread):
|
||||
def __init__(self,indexer,target):
|
||||
self.file = target
|
||||
def __init__(self,worker_id,indexer):
|
||||
self.indexer = indexer
|
||||
self.stemmer = PorterStemmer()
|
||||
self.worker_id = worker_id
|
||||
self.num_partial = 0
|
||||
self.index = dict()
|
||||
super().__init__(daemon=True)
|
||||
|
||||
def run(self):
|
||||
print("Target: " + str(self.file))
|
||||
ticker = perf_counter()
|
||||
file_load = open(self.file)
|
||||
data = json.load(file_load)
|
||||
soup = BeautifulSoup(data["content"],features="lxml")
|
||||
# Gets a cleaner version text comparative to soup.get_text()
|
||||
tic = perf_counter()
|
||||
clean_text = ' '.join(soup.stripped_strings)
|
||||
# Looks for large white space, tabbed space, and other forms of spacing and removes it
|
||||
# Regex expression matches for space characters excluding a single space or words
|
||||
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
|
||||
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
|
||||
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
|
||||
# Stems tokenized text
|
||||
clean_text = " ".join([self.indexer.stemmer.stem(i) for i in clean_text.split()])
|
||||
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
|
||||
x = [clean_text]
|
||||
toc = perf_counter()
|
||||
print("Took " + str(toc - tic) + " seconds to create clean text")
|
||||
# ngrams is a dict
|
||||
# structure looks like {ngram : {0: tf-idf score}}
|
||||
ngrams = self.indexer.get_tf_idf(x)
|
||||
if ngrams != -1:
|
||||
tic = perf_counter()
|
||||
for ngram, posting in ngrams.items():
|
||||
self.indexer.save_index(ngram, posting)
|
||||
toc = perf_counter()
|
||||
print("Took " + str(toc - tic) + " seconds to save ngram")
|
||||
|
||||
tocker = perf_counter()
|
||||
print("Took " + str(tocker - ticker) + " seconds to work")
|
||||
def dump(self):
|
||||
part_index = Index()
|
||||
part_index.length = 0
|
||||
part_index.index = list()
|
||||
|
||||
cur_partial_index_str = "temp/" + str(self.worker_id) + "_" + str(self.num_partial) + '.partial'
|
||||
cur_partial_index_index_str = "temp/" + str(self.worker_id) + "_" + str(self.num_partial) + '.index'
|
||||
|
||||
|
||||
cur_partial_index = open(cur_partial_index_str,'w')
|
||||
cur_partial_index_index = open(cur_partial_index_index_str,'w')
|
||||
|
||||
for key in self.index:
|
||||
node = Node()
|
||||
node.index_value = key
|
||||
node.postings = self.index[key]
|
||||
|
||||
jsonStr = json.dumps(node, default=lambda o: o.__dict__,sort_keys=False)
|
||||
|
||||
part_index.index.append((node.index_value,cur_partial_index.tell()))
|
||||
cur_partial_index.write(jsonStr + '\n')
|
||||
part_index.length = part_index.length + 1
|
||||
|
||||
part_index.index.sort(key=lambda y:y[0])
|
||||
jsonStr =json.dumps(part_index, default=lambda o: o.__dict__,sort_keys=False)
|
||||
cur_partial_index_index.write(jsonStr)
|
||||
|
||||
self.indexer.add_partial_index(str(self.worker_id) + "_" + str(self.num_partial))
|
||||
self.num_partial = self.num_partial + 1
|
||||
self.index.clear()
|
||||
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
target = self.indexer.get_next_file()
|
||||
if not target:
|
||||
self.dump()
|
||||
print("Worker " + str(self.worker_id) + " died")
|
||||
break
|
||||
file_load = open(target)
|
||||
data = json.load(file_load)
|
||||
soup = BeautifulSoup(data["content"],features="lxml")
|
||||
doc_id = target[target.rfind('/')+1:-5]
|
||||
url = data['url']
|
||||
print("Worker " + str(self.worker_id) + " working on " + url)
|
||||
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
|
||||
for key_words in important.keys():
|
||||
for i in soup.findAll(key_words):
|
||||
for word in word_tokenize(i.text):
|
||||
important[key_words].append(self.stemmer.stem(word))
|
||||
|
||||
# Gets a cleaner version text comparative to soup.get_text()
|
||||
clean_text = ' '.join(soup.stripped_strings)
|
||||
# Looks for large white space, tabbed space, and other forms of spacing and removes it
|
||||
# Regex expression matches for space characters excluding a single space or words
|
||||
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
|
||||
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
|
||||
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
|
||||
# Stems tokenized text
|
||||
clean_text = " ".join([self.stemmer.stem(i) for i in clean_text.split()])
|
||||
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
|
||||
|
||||
tokens = word_tokenize(clean_text)
|
||||
|
||||
#counter(count,positionals)
|
||||
|
||||
counter = dict()
|
||||
#We calculating tf_raw, and positionals here
|
||||
for i in range(len(tokens)):
|
||||
word = tokens[i]
|
||||
if word in counter:
|
||||
counter[word][0] = counter[word][0] + 1
|
||||
counter[word][1].append(i)
|
||||
else:
|
||||
counter[word] = [1,list()]
|
||||
counter[word][1].append(i)
|
||||
|
||||
doc_length = len(tokens)
|
||||
total = 0
|
||||
for index in counter:
|
||||
tf = counter[index][0]/doc_length
|
||||
log_tf = 1 + math.log(tf)
|
||||
total = total + log_tf * log_tf
|
||||
if index in self.index:
|
||||
postings = self.index[index]
|
||||
postings.append(Posting(doc_id,url,tf,0,counter[index][1]))
|
||||
else:
|
||||
self.index[index] = list()
|
||||
self.index[index].append(Posting(doc_id,url,tf,0,counter[index][1]))
|
||||
self.index[index].sort(key=lambda y:y.doc_id)
|
||||
|
||||
self.indexer.weight[doc_id] = math.sqrt(total)
|
||||
|
||||
#10 Megabytes index (in Ram approx)
|
||||
if sys.getsizeof(self.index) > 1000000:
|
||||
self.dump()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user