Added way to save ngrams to index

This commit is contained in:
unknown 2022-05-13 16:42:33 -07:00
parent 808ed56bb7
commit d9fdee7b87
20 changed files with 155 additions and 101 deletions

View File

@ -17,6 +17,7 @@ from bs4 import BeautifulSoup
from time import perf_counter from time import perf_counter
import time import time
import threading import threading
import pickle
#Data process #Data process
@ -36,10 +37,25 @@ from worker import Worker
class Indexer(): class Indexer():
def __init__(self,restart,trimming): def __init__(self,restart,trimming):
#Config stuffs #Config stuffs
self.path = "data/DEV/" self.path = "D:/Visual Studio Workspace/CS121/assignment3/data/DEV/"
self.restart = restart self.restart = restart
self.trimming = trimming self.trimming = trimming
self.stemmer = PorterStemmer() self.stemmer = PorterStemmer()
self.id = list()
# Creates a pickle file that is a list of urls where the index of the url is the id that the posting refers to.
p = os.path.dirname(os.path.abspath(__file__))
my_filename = os.path.join(p, "urlID.pkl")
if os.path.exists(my_filename):
os.remove(my_filename)
# Creates file and closes it
self.f = open(my_filename, "wb")
pickle.dump(id, self.f)
self.f.close()
# Opens for reading for the entire duration of indexer for worker to use
self.f = open(my_filename, "rb+")
#Shelves for index #Shelves for index
#https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html #https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html
@ -79,6 +95,9 @@ class Indexer():
print(len(list(self.save_4.keys()))) print(len(list(self.save_4.keys())))
print(len(list(self.save_5.keys()))) print(len(list(self.save_5.keys())))
def get_url_id(self, url):
return self.id.index(url)
def save_index(self,word,posting): def save_index(self,word,posting):
cur_save = self.get_save_file(word) cur_save = self.get_save_file(word)
lock = self.get_save_lock(word) lock = self.get_save_lock(word)
@ -88,7 +107,9 @@ class Indexer():
shelve_list = cur_save[word] shelve_list = cur_save[word]
shelve_list.append(posting) shelve_list.append(posting)
tic = perf_counter() tic = perf_counter()
shelve_list.sort(key=lambda x: x.tf_idf, reverse = True) # Sort by url id to help with query search
shelve_list.sort(key=lambda x: x.url)
# shelve_list.sort(key=lambda x: x.tf_idf, reverse = True)
toc = perf_counter() toc = perf_counter()
if toc - tic > 1 : if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to sort shelve list !") print("Took " + str(toc - tic) + "seconds to sort shelve list !")
@ -137,33 +158,22 @@ class Indexer():
# 4am # 4am
# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen # https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen
# Andy: added paramenter imporant_words in order to do multiplication of score # removed parameter "word" since it wasn't used
def get_tf_idf(self,words,word, important_words): # TODO: Add important words scaling
#tf_idf def get_tf_idf(self, words):
#words = whole text # words = [whole text] one element list
#word the word we finding the score for # return the score
#return the score
try: try:
tfidf = TfidfVectorizer() tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams
tfidf_matrix = tfidf.fit_transform(words) tfidf_matrix = tfidf.fit_transform(words) # fit trains the model, transform creates matrix
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram
score = df.iloc[0][''.join(word)] #return(df.iloc[0][''.join(word)]) #used for finding single word in dataset
for k,v in important_words.items(): data = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run
if k == 'b' and word in v: return data # returns the dict of words/n-grams with tf-idf
score = score * 1.2 #print(df) # debugging
elif k == 'h1' and word in v: except:
score = score * 1.75 print("Error in tf_idf!")
elif k == 'h2' and word in v: return
score = score * 1.5
elif k == 'h3' and word in v:
score = score * 1.2
elif k == 'title' and word in v:
score = score * 2
return(score)
#print(df)
except KeyError:
return -1
def get_data(self): def get_data(self):
@ -179,6 +189,11 @@ class Indexer():
index = 0 index = 0
while True: while True:
file_path = self.path + "" + directory + "/"+file file_path = self.path + "" + directory + "/"+file
# Add url to id here so that there isn't any problems when worker is multi-threaded
load = open(file_path)
data = json.load(load)
if data["url"] not in self.id:
self.id.append(data["url"])
if len(threads) < num_threads: if len(threads) < num_threads:
thread = Worker(self,file_path) thread = Worker(self,file_path)
threads.append(thread) threads.append(thread)
@ -194,7 +209,8 @@ class Indexer():
if(index >= num_threads): if(index >= num_threads):
index = 0 index = 0
time.sleep(.1) time.sleep(.1)
pickle.dump(self.id, self.f)
# should I self.f.close() here?
#Found 55770 documents #Found 55770 documents
# #

0
save_1.shelve.bak Normal file
View File

0
save_1.shelve.dat Normal file
View File

0
save_1.shelve.dir Normal file
View File

0
save_2.shelve.bak Normal file
View File

0
save_2.shelve.dat Normal file
View File

0
save_2.shelve.dir Normal file
View File

0
save_3.shelve.bak Normal file
View File

0
save_3.shelve.dat Normal file
View File

0
save_3.shelve.dir Normal file
View File

0
save_4.shelve.bak Normal file
View File

0
save_4.shelve.dat Normal file
View File

0
save_4.shelve.dir Normal file
View File

0
save_5.shelve.bak Normal file
View File

0
save_5.shelve.dat Normal file
View File

0
save_5.shelve.dir Normal file
View File

63
search.py Normal file
View File

@ -0,0 +1,63 @@
#Data input
import json
import os
import shelve
from bs4 import BeautifulSoup
from time import perf_counter
import time
import threading
#Data process
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
import numpy as np
import re
#Logging postings
from posting import Posting
from worker import Worker
class Search():
def __init__(self):
self.save_1 = shelve.open("save_1.shelve")
self.save_2 = shelve.open("save_2.shelve")
self.save_3 = shelve.open("save_3.shelve")
self.save_4 = shelve.open("save_4.shelve")
self.save_5 = shelve.open("save_5.shelve")
def get_save_file(self, word):
word_lower = word.lower()
if re.match(r"^[a-d0-1].*", word_lower):
return self.save_1
elif re.match(r"^[e-k2-3].*", word_lower):
return self.save_2
elif re.match(r"^[l-q4-7].*", word_lower):
return self.save_3
elif re.match(r"^[r-z8-9].*", word_lower):
return self.save_4
else:
return self.save_5
def get_userinput():
return
def get_tf_idf(self, words):
try:
tfidf = TfidfVectorizer(ngram_range=(1,3))
def search(query):
x = [query]
file = self.get_save_file()

28
test1.py Normal file
View File

@ -0,0 +1,28 @@
import json
import os
import shelve
from bs4 import BeautifulSoup
from time import perf_counter
import time
import threading
import pickle
#Data process
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
import numpy as np
from porter2stemmer import Porter2Stemmer
import re
save_1 = shelve.open("save_1.shelve")
save_2 = shelve.open("save_2.shelve")
save_3 = shelve.open("save_3.shelve")
save_4 = shelve.open("save_4.shelve")
save_5 = shelve.open("save_5.shelve")
key = list(save_1.keys())
print(key)

BIN
urlID.pkl Normal file

Binary file not shown.

View File

@ -5,6 +5,7 @@ import shelve
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
from time import perf_counter from time import perf_counter
import time import time
import pickle
import re import re
@ -30,80 +31,26 @@ class Worker(Thread):
def run(self): def run(self):
print("Target: " + str(self.file)) print("Target: " + str(self.file))
ticker = perf_counter()
tic = perf_counter()
file_load = open(self.file) file_load = open(self.file)
data = json.load(file_load) data = json.load(file_load)
soup = BeautifulSoup(data["content"],features="lxml") soup = BeautifulSoup(data["content"],features="lxml")
words = word_tokenize(soup.get_text()) # Gets a cleaner version text comparative to soup.get_text()
toc = perf_counter() clean_text = ' '.join(soup.stripped_strings)
if toc - tic > 1 : # Looks for large white space, tabbed space, and other forms of spacing and removes it
print("Took " + str(toc - tic) + "seconds to tokenize text !") # Regex expression matches for space characters excluding a single space or words
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
# Stems tokenized text
clean_text = " ".join([self.indexer.stemmer.stem(i) for i in clean_text.split()])
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
x = [clean_text]
# ngrams is a dict
# structure looks like {ngram : {0: tf-idf score}}
ngrams = self.indexer.get_tf_idf(x)
tokenized_words = list() for ngram, tfidf in ngrams.items():
stemmed_words = list() posting = Posting(self.indexer.get_url_id(data["url"]), tfidf[0])
self.indexer.save_index(ngram,posting)
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
for key_words in important.keys():
for i in soup.findAll(key_words):
for word in word_tokenize(i.text):
important[key_words].append(self.indexer.stemmer.stem(word))
tic = perf_counter()
for word in words:
if word != "" and re.fullmatch('[A-Za-z0-9]+',word):
#So all the tokenized words are here,
tokenized_words.append(word)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to isalnum text !")
#YOUR CODE HERE
tic = perf_counter()
for word in tokenized_words:
stemmed_words.append(self.indexer.stemmer.stem(word))
#stemming,
#tf_idf
#get_tf_idf(stemmed_words,word)
#post = Posting()
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to stemmed text !")
counts = Counter(stemmed_words)
size = len(stemmed_words)
for word in counts:
#posting = Posting(data["url"],self.get_tf_idf(list(' '.join(stemmed_words)),word))
tic = perf_counter()
weight = 1.0
index = 0
"""
for group in important:
for word_important in group:
if word_important.lower() == word.lower():
if index == 0:
weight = 1.2
elif index == 1:
weight = 1.8
elif index == 2:
weight = 1.5
elif index == 3:
weight = 1.3
elif index == 4:
weight = 2.0
index = index + 1
"""
posting = Posting(data["url"],counts[word]/size*weight)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tf_idf text !")
tic = perf_counter()
self.indexer.save_index(word,posting)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to save text !")
tocker = perf_counter()
print("Finished " + data['url'] + "\n" + str(tocker-ticker))