Added way to save ngrams to index

This commit is contained in:
unknown
2022-05-13 16:42:33 -07:00
parent 808ed56bb7
commit d9fdee7b87
20 changed files with 155 additions and 101 deletions

View File

@@ -5,6 +5,7 @@ import shelve
from bs4 import BeautifulSoup
from time import perf_counter
import time
import pickle
import re
@@ -30,80 +31,26 @@ class Worker(Thread):
def run(self):
print("Target: " + str(self.file))
ticker = perf_counter()
tic = perf_counter()
file_load = open(self.file)
data = json.load(file_load)
soup = BeautifulSoup(data["content"],features="lxml")
words = word_tokenize(soup.get_text())
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tokenize text !")
# Gets a cleaner version text comparative to soup.get_text()
clean_text = ' '.join(soup.stripped_strings)
# Looks for large white space, tabbed space, and other forms of spacing and removes it
# Regex expression matches for space characters excluding a single space or words
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
# Stems tokenized text
clean_text = " ".join([self.indexer.stemmer.stem(i) for i in clean_text.split()])
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
x = [clean_text]
# ngrams is a dict
# structure looks like {ngram : {0: tf-idf score}}
ngrams = self.indexer.get_tf_idf(x)
tokenized_words = list()
stemmed_words = list()
for ngram, tfidf in ngrams.items():
posting = Posting(self.indexer.get_url_id(data["url"]), tfidf[0])
self.indexer.save_index(ngram,posting)
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
for key_words in important.keys():
for i in soup.findAll(key_words):
for word in word_tokenize(i.text):
important[key_words].append(self.indexer.stemmer.stem(word))
tic = perf_counter()
for word in words:
if word != "" and re.fullmatch('[A-Za-z0-9]+',word):
#So all the tokenized words are here,
tokenized_words.append(word)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to isalnum text !")
#YOUR CODE HERE
tic = perf_counter()
for word in tokenized_words:
stemmed_words.append(self.indexer.stemmer.stem(word))
#stemming,
#tf_idf
#get_tf_idf(stemmed_words,word)
#post = Posting()
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to stemmed text !")
counts = Counter(stemmed_words)
size = len(stemmed_words)
for word in counts:
#posting = Posting(data["url"],self.get_tf_idf(list(' '.join(stemmed_words)),word))
tic = perf_counter()
weight = 1.0
index = 0
"""
for group in important:
for word_important in group:
if word_important.lower() == word.lower():
if index == 0:
weight = 1.2
elif index == 1:
weight = 1.8
elif index == 2:
weight = 1.5
elif index == 3:
weight = 1.3
elif index == 4:
weight = 2.0
index = index + 1
"""
posting = Posting(data["url"],counts[word]/size*weight)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tf_idf text !")
tic = perf_counter()
self.indexer.save_index(word,posting)
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to save text !")
tocker = perf_counter()
print("Finished " + data['url'] + "\n" + str(tocker-ticker))