changing the way to calculate weight

This commit is contained in:
inocturnis 2022-05-27 09:53:25 -07:00
parent fb88efd510
commit cf81cf5c6a
5 changed files with 147 additions and 77 deletions

2
.gitignore vendored
View File

@ -1,3 +1,5 @@
/data/
*.shelve
/__pycache__/
/test/
merged*

File diff suppressed because one or more lines are too long

View File

@ -33,6 +33,7 @@ import re
#Logging postings
from posting import Posting
from worker import Worker
from worker_weight import Worker_Weight
class Node():
index_value = ''
@ -43,9 +44,9 @@ class Index():
index = list()
class Indexer():
def __init__(self,list_partials,weight,data_paths,worker_factory=Worker):
def __init__(self,list_partials,weight,data_paths,worker_factory=Worker,worker_weight_factory=Worker_Weight):
#Config stuffs
self.path = "test/"
self.path = "data/DEV/"
self.num_doc = 0
self.list_partials = list_partials
self.weight = weight
@ -54,10 +55,12 @@ class Indexer():
self.data_paths_lock = Lock()
self.list_partials_lock = Lock()
self.workers = list()
self.merged_index = open("merged_index.full",'w')
self.merged_index_index = open("merged_index.index" ,'w')
self.worker_factory = worker_factory
self.weight_workers = list()
self.worker_weight_factory = worker_weight_factory
def start_async(self):
self.workers = [
self.worker_factory(worker_id,self)
@ -73,6 +76,21 @@ class Indexer():
for worker in self.workers:
worker.join()
def join_weight(self):
for worker in self.weight_workers:
worker.join()
def start_async_weight(self):
self.weight_workers = [
self.worker_weight_factory(worker_id,self)
for worker_id in range(1)]
for worker in self.weight_workers:
worker.start()
def start_weight(self):
self.start_async_weight()
self.join_weight()
def get_postings(self,index):
merged_index_index = open("merged_index.index" ,'r')
merged_index = open("merged_index.full",'r')
@ -88,50 +106,8 @@ class Indexer():
def set_total_weight(self):
self.get_data_path()
merged_index_index = open("merged_index.index" ,'r')
merged_index = open("merged_index.full",'r')
merged_index_index.seek(0,0)
json_value = merged_index_index.readline()
data = json.loads(json_value)
index_index = dict(data['index'])
self.start_weight()
for doc in self.data_paths:
file_load = open(doc)
data = json.load(file_load)
soup = BeautifulSoup(data["content"],features="lxml")
url = data['url']
doc_id = doc[doc.rfind('/')+1:-5]
# Gets a cleaner version text comparative to soup.get_text()
clean_text = ' '.join(soup.stripped_strings)
# Looks for large white space, tabbed space, and other forms of spacing and removes it
# Regex expression matches for space characters excluding a single space or words
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
# Stems tokenized text
clean_text = " ".join([self.stemmer.stem(i) for i in clean_text.split()])
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
tokens = word_tokenize(clean_text)
tokens = set(tokens)
total = 0
for token in tokens:
to_seek = index_index[token]
merged_index.seek(to_seek,0)
json_value = merged_index.readline()
data = json.loads(json_value)
for posting in data['postings']:
if posting['doc_id'] == doc_id:
total = total + posting['tf_idf']* posting['tf_idf']
break
self.weight[doc_id] = math.sqrt(total)
with open('docs.weight','w') as f:
f.write(json.dumps(self.weight))
def get_weight(self,doc_id):
@ -193,6 +169,8 @@ class Indexer():
partial_file.seek(0,0)
pointers = [0]*num_indices
merged_index = open("merged_index.full",'w')
merged_index_index = open("merged_index.index" ,'w')
while(True):
@ -226,30 +204,30 @@ class Indexer():
node.postings.sort(key=lambda y:y['doc_id'])
for posting in node.postings:
posting['tf_idf'] = posting['tf_raw']*math.log(self.num_doc/len(node.postings))
full_index.index.append((value,self.merged_index.tell()))
full_index.index.append((value,merged_index.tell()))
full_index.length = full_index.length + 1
jsonStr = json.dumps(node,default=lambda o: o.__dict__,sort_keys=False)
self.merged_index.write(jsonStr + '\n')
merged_index.write(jsonStr + '\n')
full_index.index.sort(key=lambda y:y[0])
jsonStr =json.dumps(full_index, default=lambda o: o.__dict__,sort_keys=False)
self.merged_index_index.write(jsonStr)
merged_index_index.write(jsonStr)
for partial_index in self.list_partials:
os.remove("temp/" + partial_index+'.partial')
os.remove("temp/" + partial_index+'.index')
self.merged_index_index.close()
self.merged_index.close()
merged_index_index.close()
merged_index.close()
def main():
indexer = Indexer(list(),dict(),list())
indexer.get_data_path()
print("We have " + str(len(indexer.data_paths)) + " documents to go through !" )
indexer.start()
indexer.merge()
#indexer.get_data_path()
#print("We have " + str(len(indexer.data_paths)) + " documents to go through !" )
#indexer.start()
#indexer.merge()
print("Finished merging into 1 big happy family")
indexer.set_total_weight()

View File

@ -1,18 +0,0 @@
#Multiple implementation of stemming here please
class Stemmer():
def __init__(self,mode, data):
#Different type of stemmer = different modes
self.mode = mode
self.data = data
def stem(self):
#Do stuff here
if(self.mode == 0):
#Do stemmer 1
return #stemmed data
#....
def #name of stemmer 1
def #name of stemmer 2

109
worker_weight.py Normal file
View File

@ -0,0 +1,109 @@
from threading import Thread
import json
import os
from bs4 import BeautifulSoup
import re
import math
import time
#Data process
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from posting import Posting
import sys
class Node():
index_value = ''
postings = list()
class Index():
length = 0
index = list()
class Worker_Weight(Thread):
def __init__(self,worker_id,indexer):
self.indexer = indexer
self.stemmer = PorterStemmer()
self.worker_id = worker_id
self.num_partial = 0
self.weight = dict()
merged_index_index = open("merged_index.index" ,'r')
self.merged_index = open("merged_index.full",'r')
merged_index_index.seek(0,0)
json_value = merged_index_index.readline()
data = json.loads(json_value)
self.index_index = dict(data['index'])
super().__init__(daemon=True)
def dump(self):
with open("docs"+str(self.worker_id)+".weight",'w') as f:
f.write(json.dumps(self.weight))
def run(self):
while True:
target = self.indexer.get_next_file()
if not target:
self.dump()
print("Worker " + str(self.worker_id) + " died")
break
print("Worker " + str(self.worker_id) + " weighting " + target)
file_load = open(target)
data = json.load(file_load)
soup = BeautifulSoup(data["content"],features="lxml")
url = data['url']
doc_id = target[target.rfind('/')+1:-5]
# Gets a cleaner version text comparative to soup.get_text()
clean_text = ' '.join(soup.stripped_strings)
# Looks for large white space, tabbed space, and other forms of spacing and removes it
# Regex expression matches for space characters excluding a single space or words
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
# Stems tokenized text
clean_text = " ".join([self.stemmer.stem(i) for i in clean_text.split()])
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
tokens = word_tokenize(clean_text)
total = 0
counter = dict()
#We calculating tf_raw, and positionals here
for i in range(len(tokens)):
word = tokens[i]
if word in counter:
counter[word]= counter[word] + 1
else:
counter[word] = 1
doc_length = len(tokens)
for index in tokens:
to_seek = self.index_index[index]
self.merged_index.seek(to_seek,0)
json_value = self.merged_index.readline()
data = json.loads(json_value)
df = len(data['postings'])
tf = counter[index]/doc_length
idf = math.log(self.indexer.num_doc/df)
tf_idf = tf*idf
total = total + tf_idf*tf_idf
self.weight[doc_id] = math.sqrt(total)