added important tokens

This commit is contained in:
unknown
2022-05-06 17:18:34 -07:00
parent 8e7013e840
commit c616b37432
3 changed files with 56 additions and 3 deletions

View File

@@ -107,7 +107,9 @@ class Indexer():
# me I would love to know, as I think that method might be quicker, maybe, idk it like
# 4am
# https://stackoverflow.com/questions/34449127/sklearn-tfidf-transformer-how-to-get-tf-idf-values-of-given-words-in-documen
def get_tf_idf(self,words,word):
# Andy: added paramenter imporant_words in order to do multiplication of score
def get_tf_idf(self,words,word, important_words):
#tf_idf
#words = whole text
#word the word we finding the score for
@@ -116,7 +118,19 @@ class Indexer():
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(words)
df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out())
return(df.iloc[0][''.join(word)])
score = df.iloc[0][''.join(word)]
for k,v in important_words.items():
if k == 'b' and word in v:
score = score * 1.2
elif k == 'h1' and word in v:
score = score * 1.75
elif k == 'h2' and word in v:
score = score * 1.5
elif k == 'h3' and word in v:
score = score * 1.2
elif k == 'title' and word in v:
score = score * 2
return(score)
#print(df)
except KeyError:
return -1
@@ -135,6 +149,15 @@ class Indexer():
data = json.load(file_load)
soup = BeautifulSoup(data["content"],from_encoding=data["encoding"])
words = word_tokenize(soup.get_text())
#getting important tokens
important = {'b' : [], 'h1' : [], 'h2' : [], 'h3' : [], 'title' : []}
for type in important.keys():
for i in soup.findAll(type):
for word in word_tokenize(i.text):
important[type].append(self.stemmer.stem(word))
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tokenize text !")
@@ -166,7 +189,8 @@ class Indexer():
for word in stemmed_words:
#posting = Posting(data["url"],self.get_tf_idf(list(' '.join(stemmed_words)),word))
tic = perf_counter()
posting = Posting(data["url"],self.tf_idf_raw(stemmed_words,word))
#added argument important
posting = Posting(data["url"],self.tf_idf_raw(stemmed_words,word, important))
toc = perf_counter()
if toc - tic > 1 :
print("Took " + str(toc - tic) + "seconds to tf_idf text !")