diff --git a/indexer.py b/indexer.py index 7ec56af..ef711ad 100644 --- a/indexer.py +++ b/indexer.py @@ -116,6 +116,7 @@ class Indexer(): print(word) print("You have somehow went beyond the magic") return self.save_5 + def get_save_lock(self,word): word_lower = word.lower() if re.match(r"^[a-d0-1].*",word_lower): @@ -130,6 +131,7 @@ class Indexer(): print(word) print("You have somehow went beyond the magic") return self.save_5_lock.acquire() + # I have a test file (mytest.py) with pandas but couldn't figure out how to grab just a single cell. # so I came up with this, if anyone knows how to get a single cell and can explain it to # me I would love to know, as I think that method might be quicker, maybe, idk it like @@ -178,7 +180,7 @@ class Indexer(): def get_data(self): - num_threads = 8 + num_threads = 1 threads = list() for directory in os.listdir(self.path): diff --git a/worker.py b/worker.py index 9ad5140..b0abf39 100644 --- a/worker.py +++ b/worker.py @@ -52,49 +52,54 @@ class Worker(Thread): tic = perf_counter() for word in words: if word != "" and re.fullmatch('[A-Za-z0-9]+',word): - #So all the tokenized words are here, tokenized_words.append(word) toc = perf_counter() if toc - tic > 1 : print("Took " + str(toc - tic) + "seconds to isalnum text !") - #YOUR CODE HERE tic = perf_counter() for word in tokenized_words: stemmed_words.append(self.indexer.stemmer.stem(word)) - #stemming, - #tf_idf - #get_tf_idf(stemmed_words,word) - #post = Posting() + toc = perf_counter() if toc - tic > 1 : print("Took " + str(toc - tic) + "seconds to stemmed text !") - counts = Counter(stemmed_words) - size = len(stemmed_words) - for word in counts: - #posting = Posting(data["url"],self.get_tf_idf(list(' '.join(stemmed_words)),word)) + """ + tfidf = TfidfVectorizer(ngram_range=(1,3)) # ngram_range is range of n-values for different n-grams to be extracted (1,3) gets unigrams, bigrams, trigrams + tfidf_matrix = tfidf.fit_transform(stemmed_words) # fit trains the model, transform creates matrix + #df = pd.DataFrame(tfidf_matrix.toarray(), columns = tfidf.get_feature_names_out()) # store value of matrix to associated word/n-gram + tfidf.sget_feature_names_out() + #tf_idf_dict = df.to_dict() # transform dataframe to dict *could be expensive the larger the data gets, tested on ~1000 word doc and took 0.002 secs to run + + print(tfidf_matrix) + """ + + tfIdfVectorizer=TfidfVectorizer(use_idf=True) + tfIdf = tfIdfVectorizer.fit_transform(stemmed_words) + df = pd.DataFrame(tfIdf[0].T.todense(), index=tfIdfVectorizer.get_feature_names_out(), columns=["TF-IDF"]) + df = df.sort_values('TF-IDF', ascending=False) + + print(df.head(25)) + + for word in tf_idf_dict.keys(): tic = perf_counter() + print(tf_idf_dict) weight = 1.0 - index = 0 - """ - for group in important: - for word_important in group: - if word_important.lower() == word.lower(): - if index == 0: - weight = 1.2 - elif index == 1: - weight = 1.8 - elif index == 2: - weight = 1.5 - elif index == 3: - weight = 1.3 - elif index == 4: - weight = 2.0 - index = index + 1 - """ + for k,v in important.items(): + if k == 'b' and word in v: + weight = 1.2 + elif k == 'h1' and word in v: + weight = 1.75 + elif k == 'h2' and word in v: + weight = 1.5 + elif k == 'h3' and word in v: + weight = 1.2 + elif k == 'title' and word in v: + weight = 2 + + posting = Posting(data["url"],tf_idf_dict[word]*weight) - posting = Posting(data["url"],counts[word]/size*weight) toc = perf_counter() if toc - tic > 1 : print("Took " + str(toc - tic) + "seconds to tf_idf text !")