We are looking for TF_WEIGHT not IDF_WEIGHT, make things A LOT CHEAPER

This commit is contained in:
inocturnis 2022-05-27 10:39:13 -07:00
parent cf81cf5c6a
commit 8d2dcea172
4 changed files with 32 additions and 137 deletions

1
docs.weight Normal file

File diff suppressed because one or more lines are too long

View File

@ -46,7 +46,7 @@ class Index():
class Indexer():
def __init__(self,list_partials,weight,data_paths,worker_factory=Worker,worker_weight_factory=Worker_Weight):
#Config stuffs
self.path = "data/DEV/"
self.path = "test/"
self.num_doc = 0
self.list_partials = list_partials
self.weight = weight
@ -76,20 +76,6 @@ class Indexer():
for worker in self.workers:
worker.join()
def join_weight(self):
for worker in self.weight_workers:
worker.join()
def start_async_weight(self):
self.weight_workers = [
self.worker_weight_factory(worker_id,self)
for worker_id in range(1)]
for worker in self.weight_workers:
worker.start()
def start_weight(self):
self.start_async_weight()
self.join_weight()
def get_postings(self,index):
merged_index_index = open("merged_index.index" ,'r')
@ -104,11 +90,11 @@ class Indexer():
data = json.loads(json_value)
return data['postings']
def set_total_weight(self):
self.get_data_path()
self.start_weight()
def set_weight(self):
weight_file = open('docs.weight','w')
jsonStr =json.dumps(self.weight, default=lambda o: o.__dict__,sort_keys=False)
weight_file.write(jsonStr)
weight_file.close()
def get_weight(self,doc_id):
weight = open('docs.weight','r')
@ -223,12 +209,22 @@ class Indexer():
def main():
indexer = Indexer(list(),dict(),list())
#indexer.get_data_path()
#print("We have " + str(len(indexer.data_paths)) + " documents to go through !" )
#indexer.start()
#indexer.merge()
indexer.get_data_path()
print("We have " + str(len(indexer.data_paths)) + " documents to go through !" )
indexer.start()
indexer.merge()
print("Finished merging into 1 big happy family")
indexer.set_total_weight()
indexer.set_weight()
tic = time.perf_counter()
indexer.get_postings('artifici')
toc = time.perf_counter()
print(f"Took {toc - tic:0.4f} seconds to get postings for artifici")
tic = time.perf_counter()
indexer.get_weight('00ba3af6a00b7cfb4928e5d234342c5dc46b4e31714d4a8f315a2dd4d8e49860')
print(f"Took {toc - tic:0.4f} seconds to get weight for some random page ")
toc = time.perf_counter()

View File

@ -12,6 +12,7 @@ from nltk.stem import PorterStemmer
from posting import Posting
import math
import sys
@ -110,17 +111,23 @@ class Worker(Thread):
counter[word][1].append(i)
doc_length = len(tokens)
total = 0
for index in counter:
tf = counter[index][0]/doc_length
log_tf = 1 + math.log(tf)
total = total + log_tf * log_tf
if index in self.index:
postings = self.index[index]
postings.append(Posting(doc_id,url,counter[index][0]/doc_length,0,counter[index][1]))
postings.append(Posting(doc_id,url,tf,0,counter[index][1]))
else:
self.index[index] = list()
self.index[index].append(Posting(doc_id,url,counter[index][0]/doc_length,0,counter[index][1]))
self.index[index].append(Posting(doc_id,url,tf,0,counter[index][1]))
self.index[index].sort(key=lambda y:y.doc_id)
self.indexer.weight[doc_id] = math.sqrt(total)
#10 Megabytes index (in Ram approx)
if sys.getsizeof(self.index) > 10000000:
if sys.getsizeof(self.index) > 1000000:
self.dump()

View File

@ -1,109 +0,0 @@
from threading import Thread
import json
import os
from bs4 import BeautifulSoup
import re
import math
import time
#Data process
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from posting import Posting
import sys
class Node():
index_value = ''
postings = list()
class Index():
length = 0
index = list()
class Worker_Weight(Thread):
def __init__(self,worker_id,indexer):
self.indexer = indexer
self.stemmer = PorterStemmer()
self.worker_id = worker_id
self.num_partial = 0
self.weight = dict()
merged_index_index = open("merged_index.index" ,'r')
self.merged_index = open("merged_index.full",'r')
merged_index_index.seek(0,0)
json_value = merged_index_index.readline()
data = json.loads(json_value)
self.index_index = dict(data['index'])
super().__init__(daemon=True)
def dump(self):
with open("docs"+str(self.worker_id)+".weight",'w') as f:
f.write(json.dumps(self.weight))
def run(self):
while True:
target = self.indexer.get_next_file()
if not target:
self.dump()
print("Worker " + str(self.worker_id) + " died")
break
print("Worker " + str(self.worker_id) + " weighting " + target)
file_load = open(target)
data = json.load(file_load)
soup = BeautifulSoup(data["content"],features="lxml")
url = data['url']
doc_id = target[target.rfind('/')+1:-5]
# Gets a cleaner version text comparative to soup.get_text()
clean_text = ' '.join(soup.stripped_strings)
# Looks for large white space, tabbed space, and other forms of spacing and removes it
# Regex expression matches for space characters excluding a single space or words
clean_text = re.sub(r'\s[^ \w]', '', clean_text)
# Tokenizes text and joins it back into an entire string. Make sure it is an entire string is essential for get_tf_idf to work as intended
clean_text = " ".join([i for i in clean_text.split() if i != "" and re.fullmatch('[A-Za-z0-9]+', i)])
# Stems tokenized text
clean_text = " ".join([self.stemmer.stem(i) for i in clean_text.split()])
# Put clean_text as an element in a list because get_tf_idf workers properly with single element lists
tokens = word_tokenize(clean_text)
total = 0
counter = dict()
#We calculating tf_raw, and positionals here
for i in range(len(tokens)):
word = tokens[i]
if word in counter:
counter[word]= counter[word] + 1
else:
counter[word] = 1
doc_length = len(tokens)
for index in tokens:
to_seek = self.index_index[index]
self.merged_index.seek(to_seek,0)
json_value = self.merged_index.readline()
data = json.loads(json_value)
df = len(data['postings'])
tf = counter[index]/doc_length
idf = math.log(self.indexer.num_doc/df)
tf_idf = tf*idf
total = total + tf_idf*tf_idf
self.weight[doc_id] = math.sqrt(total)